

 [image: pyKLIP: om nom nom star]

pyKLIP

pyKLIP is a python library for direct imaging of exoplanets and disks. It uses an implmentation of
KLIP [http://arxiv.org/abs/1207.4197] and KLIP-FM [http://arxiv.org/abs/1604.06097] to perform point spread
function (PSF) subtraction. KLIP is based off of principal component analysis to model and subtract off the stellar PSF
to look for faint exoplanets and disks and are around it.

pyKLIP is open source, BSD-licened, and available at
this Bitbucket repo [https://bitbucket.org/pyKLIP/pyklip]. You can use the issue tracker there to submit issues and
all contributions are welcome!

Features

	Capable of running ADI, SDI, ADI+SDI with spectral templates to optimize the PSF subtraction

	Library of KLIP-FM capabilties including forward-modelling a PSF, detection algorithms, and spectral extraction.

	A Forward Model Matched Filter of KLIP is available for GPI as well as post-processing planet detection algorithms.

	Parallelized with both a quick memory-intensive mode and a slower memory-lite mode

	Modularized to support data from multiple instruments. Currently there are interfaces to
P1640 [http://www.amnh.org/our-research/physical-sciences/astrophysics/research/project-1640],
GPI [http://planetimager.org/], SPHERE, MagAO/VisAO, and Keck/NIRC2.

	If confused about what a function is doing, read the docstring for it. We have tried our best to document everything

	Version 1.1 - see Release Notes for update notes

Bugs/Feature Requests

Please use the Issue Tracker [https://bitbucket.org/pyKLIP/pyklip/issues?status=new&status=open] on Bitbucket to
submit bugs and new feature requests. Anyone is able to open issues.

Attribution

The development of pyKLIP is led by Jason Wang with contributions made by Jonathan Aguilar, JB Ruffio, Rob de Rosa, Schuyler Wolff, Abhijith Rajan, Zack Briesemeister, Kate Follette, Maxwell Millar-Blanchaer, Alexandra Greenbaum, Simon Ko, Tom Esposito, Elijah Spiro, and Laurent Pueyo. If you use this code, please
cite cite the Astrophysical Source Code Library record of it (ASCL [http://ascl.net/1506.001] or
ADS [http://adsabs.harvard.edu/abs/2015ascl.soft06001W])

Wang, J. J., Ruffio, J.-B., De Rosa, R. J., et al. 2015, Astrophysics Source Code Library, ascl:1506.001

Contents

Setup

	Installation
	Dependencies

	Install

	Note on parallelized performance

	Release Notes

Tutorials

	Basic KLIP Tutorial with GPI
	Reading in GPI Data

	Running KLIP

	Picking KLIP Parameters for Point Sources

	Picking KLIP Parameters for Disks

	Project 1640 PyKLIP tutorial
	Overview

	Tutorial

	Calibrating Algoirthm Throughput & Generating Contrast Curves
	Contrast Curves

	Injecting Fake Planets

	Bayesian KLIP-FM Astrometry (BKA)
	Why BKA?

	BKA Requirements

	Forward Modelling the PSF with KLIP-FM

	Fitting the Astrometry using MCMC and Gaussian Processes

	Forward Model Matched Filter (FMMF) Tutorial with GPI
	Input Data

	Running FMMF

	Disk Foward Modelling Tutorial with GPI
	Running

	Current Works in Progress

	Developing for pyKLIP
	Docker

	Tests

	pyklip package
	Subpackages

	Submodules

	pyklip.covars module

	pyklip.fakes module

	pyklip.fitpsf module

	pyklip.fm module

	pyklip.klip module

	pyklip.parallelized module

	pyklip.rdi module

	pyklip.spectra_management module

	Module contents

Indices and tables

	Index

	Module Index

	Search Page

Installation

Dependencies

Before you install pyKLIP, you will need to install the following packages, which are useful for most astronomical
data analysis situations anyways. The main pyKLIP code is cross-compatible with both python2.7 and python3.5.

	numpy

	scipy

	astropy

	Optional: matplotlib, mkl-service

For the optional packages, matplotlib is useful to actually plot the images. For mkl-service, pyKLIP autmoatically
toggles off MKL parallelism during parallelized KLIP if the mkl-service package is installed. Otherwise, you
will need to toggle them off yourself for optimal performance. See notes on parallelized performance below.

For Bayesian KLIP-FM Astrometry (BKA) specifically, you’ll also want to install the following packages:

	emcee

	corner

As pyKLIP is computationally expensive, we recommend a powerful computer to optimize the computation. As direct imaging
data comes in many different forms, we cannot say
right here what the hardware requirements are for your data reduction needs. For data from the Gemini Planet Imager
(GPI), a computer with 20+ GB of memory is optimal for an 1 hour sequence taken with the integral field spectrograph and
reduced using ADI+SDI. For broadband polarimetry data from GPI, any laptop can reduce the data.

Install

Due to the continually developing nature of pyKLIP, we recommend you use the current version of the code on
Bitbucket [https://bitbucket.org/pyKLIP/pyklip] and keep it updated.
To install the most up to date developer version, clone this repository if you haven’t already:

$ git clone git@bitbucket.org:pyKLIP/pyklip.git

This clones the repoistory using SSH authentication. If you get an authentication error, you will want to follow this guide [https://confluence.atlassian.com/bitbucket/set-up-ssh-for-git-728138079.html] to setup SSH authentication, or clone using the HTTPS option instead [https://confluence.atlassian.com/bitbucket/clone-a-repository-223217891.html], which just requires a password.

Once the repository is cloned onto your computer, cd into it and run the setup file:

$ python setup.py develop

If you use multiple versions of python, you will need to run setup.py with each version of python
(this should not apply to most people).

Note on parallelized performance

Due to the fact that numpy compiled with BLAS and MKL also parallelizes linear algebra routines across multiple cores,
performance can actually sharply decrease when multiprocessing and BLAS/MKL both try to parallelize the KLIP math.
If you are noticing your load averages greatly exceeding the number of threads/CPUs,
try disabling the BLAS/MKL optimization when running pyKLIP.

To disable OpenBLAS, just set the following environment variable before running pyKLIP:

$ export OPENBLAS_NUM_THREADS=1

A recent update to anaconda [https://www.continuum.io/blog/developer-blog/anaconda-25-release-now-mkl-optimizations]
included some MKL optimizations which may cause load averages to greatly exceed the number of threads specified in pyKLIP.
As with the OpenBLAS optimizations, this can be avoided by setting the maximum number of threads the MKL-enabled processes can use:

$ export MKL_NUM_THREADS=1

As these optimizations may be useful for other python tasks, you may only want MKL_NUM_THREADS=1 only when pyKLIP is called,
rather than on a system-wide level. By defaulf in parallelized.py, if mkl-service is installed, the original
maximum number of threads for MKL is saved, and restored to its original value after pyKLIP has finished. You can also
modify the number of threads MKL uses on a per-code basis by running the following piece of code (assuming mkl-service is installed):

import mkl
mkl.set_num_threads(1)

Release Notes

	Version 1.1

	
	Updated installation to be much easier

	Reorganized repo structure to match standard python repos

	Improvements to automatic planet detection code

	Version 1.0

	
	Initial Release

	Fully-functional KLIP implementation for ADI and SDI

	Interface for GPI data in both spectral and polarimetry mode

	Utility functions like fake injection and contrast calculation

Basic KLIP Tutorial with GPI

Here, we will explain how to run a simple PSF subtraciton using the KLIP algorithm in pyKLIP. If you are not familiar
with KLIP, we suggest you first read the KLIP paper [http://arxiv.org/abs/1207.4197] which describes the algorithm
in detail. In this tutorial, we assume you are familiar with the terminology in KLIP. We will use GPI
data to explain the process, but other than reading in the data, all the PSF subtraction steps are the same for
any other dataset.

Reading in GPI Data

First, you’ll need some reduced GPI datacubes to run KLIP one since pyKLIP does not reduce raw data.
If you have raw GPI data you need to reduce, the
GPI Data Reduction Pipeline Documentation [http://docs.planetimager.org/pipeline/] page has all of the instructions
and tutorials to reduce GPI data. After reducing the data, you should have a series of 3-D datacubes where the third
dimension is either wavelength or polarization depending if you are working with spectral or polarimetric data
respectively. Regardless, the data should have the satellite spot fluxes and locations measured and stored in the header
as we will need these to register and calibrate the datacubes.
If you don’t have any GPI data or are simply too lazy to reduce some yourself,
you can use the reduced Beta Pic datacubes from the
GPI Public Data Release [https://www.gemini.edu/sciops/instruments/gpi/public-data].

Once you have reduced some data, we need to identify and parse through the GPI data from GPI specific information
to standardized information for pyKLIP

import glob
import pyklip.instruments.GPI as GPI

filelist = glob.glob("path/to/dataset/*.fits")
dataset = GPI.GPIData(filelist, highpass=True)

This returns dataset, an implementation of the abstract class pyklip.instruments.Instrument.Data with standardized fields
that are needed to perform the KLIP subtraction, none of which are instrument specific.
Please read the docstring for pyklip.instruments.GPI.GPIData to more information on the the fields for GPI data.

Note

If you get an error here, you likely did not reduce the raw GPI data correctly, so please check that the satellite spots
were measured and stored in the header.

Note

When reading in the GPI data, the data are no longer automatically high-pass filtered.
You should explictly high pass filter the data if desired (we find it is typically good for planet SNR
using the optional keyword highpass=True. You can also apply the high-pass filter as pre-processing
step before KLIP in pyklip.parallelized.klip_dataset if you don’t want to do it here as it is slower.

Running KLIP

Next, we will perform the actual KLIP ADI+SDI subtraction. To take advantage of the easily parallelizable computation, we will use the
pyklip.parallelized module to perform the KLIP subtraction, which uses the python multiprocessing library to parallelize the code

import pyklip.parallelized as parallelized

parallelized.klip_dataset(dataset, outputdir="path/to/save/dir/", fileprefix="myobject",
 annuli=9, subsections=4, movement=1, numbasis=[1,20,50,100],
 calibrate_flux=True, mode="ADI+SDI")

This will save the processed KLIP images in the field dataset.output and as FITS files saved using the directory and fileprefix
specified. The FITS files contain two different kinds of outputs. The first is a “KL-mode cube”, a single 3D datacube where the z-axis is all the
different KL mode cutoffs used to model the stellar PSF. Here is an example KL-mode cube using GPI public data on beta
Pic, where the planet is quite visible.

[image: _images/betpic_j_klmodes_cube.gif]
The second is a series of spectral datacubes with the z-axis is wavelength and each datacube
uses a different KL mode cutoff as specified by its filename. Here is an example of a 20 KL-mode cutoff cube using the
same GPI data on beta Pic.

[image: _images/betpic_j_kl20_speccube.gif]

Picking KLIP Parameters for Point Sources

There are a lot of ways to tune the reduction, so check out the docstring of pyklip.parallelized.klip_dataset() for
all the keywords you can use.
Here, we have provided the keywords which we use the most and should be sufficient for most
cases.

Geometry

We have divided the image into 9 annuli and each annuli into 4
sectors (which do not rotate with the sky) and run KLIP independently on each sector.
Picking the geometry depends on the structure of the PSF, but we have
found this to be pretty good for GPI data.

annuli_spacing

By default we break up the image into equal sized annuli (except for the last one that emcompasses the rest of the image), but sometimes we want smaller annuli closer in, since the stellar PSF changes rapidly there. In that case, we suggest setting annuli_spacing="log" so the widths of the annuli increases logarithmatically.

“Aggressiveness”

“Aggressiveness” is a key parameter to tune in the PSF subtraction. Increasing the aggressiveness of the PSF
subtraction typically allows you to better model and subtract the stellar PSF. However, doing so also typically
causes any astrophysical flux (e.g. planets, disks) to also be subtracted to a higher degree. Typically, there
is a sweet spot that balances subtracting the stellar PSF and
maintaining the signal of planets and disks. The aggressiveness of the
subtraction is tuned via a combination of the
“movement” or “minrot” parameters and “numbasis” keywords, as
described below.

movement

In our exmaple, to build the reference library to build our principal components, we picked PSFs where any potential
astrophysical source will have moved by 1 pixel due to ADI (azimuthal motion) and SDI (radial motion). Decreasing
this number increases the aggressiveness of the reduction as it will allow you to pick PSFs that are closer in time and
wavelength. However, you will also suffer more self-subtraction of potential astrophysical sources.
We find for GPI data, 1 pixel is good for maximizing the SNR of potential planets in the data.

numbasis

We don’t pick just one KL basis cutoff for KLIP, but rather an array so we can play aroud with the optimal number.
Increasing the number of KL modes also increases
the aggressiveness of the reduction. For GPI data, we find between 20-50 KL modes for planet data and 1-10 KL modes
for disk data is optimal. However, with both the movement and numbasis parameters, it requires a bit
of searching to find the optimal configuration.

mode

The mode keyword specifies whether to use ADI, SDI, or both.

spectrum

A parameter not specified in this tutorial is the spectral template. Since we know exoplanet spectra should follow
the models (at least roughly), we can use that to better choose reference PSFs to subtract out the stellar PSF.
Currently, the only option is to optimze for T-dwarfs which have sharp methane absorption features. This can be
turned on by setting spectrum='methane'. By doing this, in channels without methane absorption (i.e. where the
planet signal is strong), we will use reference PSFs from channels where with methane abosrption (i.e. where the planet
signal is weak). The aggressiveness of this is tuned with the movement keyword (i.e. by decreasing movement,
we will allow into the reference PSFs images at wavelengths where the ratio of “no methane abospriton”/”some methane
absorption” is smaller). When this keyword is set, we also do a weighted mean collapse in wavelength for the outputted
KL-mode cubes.

Other

We have also choosen to flux calibrate the data to convert it into contrast units to work in more physical units.

Note

The calibrate_flux keyword does not correct for algorithm throughput, which is a loss of
flux due to the PSF subtraction process. It merely provides the calibration to convert to contrast units. You
will then need to correct for algorithm throughput by methods such as fake planet injection.
See Calibrating Algoirthm Throughput & Generating Contrast Curves which explains how to do this in the context of contrast curves.

There are more parameters that can be tweaked. Read the docstring of pyklip.parallelized.klip_dataset() for
the full details.

Picking KLIP Parameters for Disks

Using KLIP for disks can be difficult since the optimal parameters
will depend on the geometry of the disk and the amount of field
rotation in the sequence. Below, we describe some starting
points for tuning the subtraction. Note that for disks it is suggested
to only use mode=”ADI” as SDI can severely distort the disk signal.

Geometry

PyKLIP splits divides the image into a number of annuli centered
around the center of the image as defined by the dataset.centers
attribute, and splits each of those annuli into a number of
subsections, set by the annuli and subsection keywords,
respectively. For disks, we find subsections=1 to be effective. The
number of annuli can also depend on the geometry of the disk, but we
find that annuli=1 is sufficient for most cases and produces
smoother looking reductions.

Aggressiveness

The aggressiveness of a PSF subtraction is influenced by a number of
parameters described below. There is often
no one optimal aggressiveness, and there is much to be gained from
both more aggressive and less aggressive reductions. A more aggressive
reduction will allows you to probe features at closer inner working
angles at the cost of killing fainter or more extended features. The
aggressiveness and the parameters you choose can also be affected by
the geometry and strength of the detection. Edge-on disks are more
resilient to more aggressive reductions while face-on disks will need less aggressive
reductions due to the self-subtraction associated with ADI.

Numbasis

Changing the number of basis vectors subtracted will show different
sets of features. More basis vectors will self-subtract more of the
extended PSF structure, showing features in closer inner working
angles while subtracting fewer basis vectors will show more extended
features of the disk.

Minrot

Given the structure of debris disks, it is preferable to use the
minrot criterion to select basis vectors rather than the movement
parameters as is used in psf subtraction. The choise for this paraeter
will depend on the geometry. For thin disks, a smaller minrot is
desireable as it will allow for a cleaner subtraction while thicker
disks will require a larger minrot to avoid self-subtraction.

Project 1640 PyKLIP tutorial

Usage instructions for Project 1640 are similar to those for GPI with the exception that the grid spot positions must
be found before KLIP can be run. Import the P1640 instrument class instead of the GPI instrument class.

The grid spots locations only need to be found once, after which they can be read from a file. Instructions for use are found below.

Overview

P1640 Instrument class and support code to interface with PyKLIP PSF
subtraction.

Author: Jonathan Aguilar

The code here defines the instrument class for Project 1640 that
interacts with the rest of the PyKLIP module. The Instrument class
contains the information that is needed to scale and align the
datacubes, and to select the reference slicess.

Dependencies

Required

	numpy

	scipy

	astropy

	python 2.7 or 3.4

	photutils #### Recommended (required to run the cube and spot
verifier tools)

	matplotlib

Installing photutils

Instructions for installing photutils can be found here:
http://photutils.readthedocs.io/en/latest/photutils/install.html. Note
that the conda instructions may not work - in that case, you can try
conda install -c https://conda.anaconda.org/astropy photutils

Steps

The general steps are:

	Collect datacubes

	Vet datacubes

	Fit grid spots

	Vet grid spots

	Run KLIP

A set of tools built into PyKLIP makes this easier to do.

The trickiest part is setting up the grid spot fitting and making sure
it succeeds. Once that’s done, the grid spot positions can simply be
read in from a file. This is described in more detail below.

TODO: Contrast curves and fake injections require unocculted cubes.
Currently there is no way to hook these in. Yeah, I want it too. If you
want it so bad, do it yourself.

Tutorial

Important This tutorial assumes you are inside the following
directory:

pyklip/pyklip/instruments/P1640_support/tutorial

A couple datacubes (with all but the essential information stripped from
them) are available by clicking this link
here [https://sites.google.com/site/aguilarja/otherstuff/pyklip-tutorial-data]
or from the command line with
wget https://sites.google.com/site/aguilarja/otherstuff/pyklip-tutorial-data/P1640_tutorial_data.tar.gz
Download the tarball and unpack the fits files into the
tutorial/data folder with the command
tar -xvf P1640_tutorial_data.tar.gz

Living On The Edge Version

If you trust me, you can do only steps “Collect the datacubes”, “Fit the
gridspots”, and “Run KLIP”. This skips visual inspection of the
datacubes and spot fitting.

The P1640Data class will automatically check for the presence of the
spot files and, if it doesn’t find them, will attempt to do the fitting
itself. You’re then trusting that the fitting succeeds. It normally
does, but generally I like to fit the grid spots first, visually inspect
them, and then move on to the KLIP step. If you don’t think you need to
do this - or you already have done the grid spot fitting and vetting -
then you can move right on to the Run KLIP step. Otherwise, proceed
below to fit the grid spots.

Collect the datacubes

Easy-peasy.

:::python
 import glob
 filelist=glob.glob("*Occulted*fits")

Vet the datacubes

This uses the cube checker, a separate command-line tool that lets you
quickly decide whether or not you should include a particular cube in
your reduction.

Note: there is a new version called P1640_cube_checker_interactive
that is way easier to use, replace P1640_cube_checker with this in
the lines below if you want to use it. We have noticed that it can take
a long time to load over ssh on Macs (for some reason this doesn’t
affect Linux). A workaround is to enable ssh compression with ssh -C.

From an IPython terminal, do: (the syntax here is weird because telling
python to evaluate python variables)

:::python
 import sys
 sys.path.append("..")
 import P1640_cube_checker
 good_cubes = P1640_cube_checker.run_checker(filelist)
 or
 %run ../P1640_cube_checker.py --files {" ".join(filelist)}

Alternatively, from a bash terminal, do:

:::bash
 filelist=`ls data/*Occulted*fits`
 python ../P1640_cube_checker.py --files ${filelist}

An animation of each cube, along with observing conditions and a
comparison to the other cubes in the set, will pop up and the terminal
will prompt you Y/N to keep it in the “good cubes” list. These are the
files that you will keep for KLIP. If you like the cube, press Y. If you
don’t, press N. All the Y’s will be spit out in a copy-pasteable format
at the end, and stored in memory (in this case, in the variable
good_cubes). After you’ve looped through all the cubes, you’ll be
prompted to quit or re-inspect the cubes. If you’re happy with your
selection, go ahead and quit (Y), but if you want to revisit your
choices, press N to restart the loop. You’ll have redo all of your
decisions.

Fit grid spots

Note: you should only need to do this once, after which you can just
read in the grid spot positions from a file.

First, re-assemble your handy list of P1640 data.

Grid spots MUST exist, and (for now) they MUST be in the normal
orientation. If this isn’t true, then the code will hang.

In order to fit the spots, we need the P1640spots module:

:::python
 import sys
 sys.path.append("..")
 import P1640spots
 # if the variables below are not set, default values will be read from P1640.ini
 # for the tutorial, let's set them explicitly
 spot_filepath = 'shared_spot_folder/'
 spot_filesuffix = '-spot'
 spot_fileext = 'csv'
 for test_file in good_cubes:
 spot_positions = P1640spots.get_single_file_spot_positions(test_file, rotated_spots=False)
 P1640spots.write_spots_to_file(test_file, spot_positions, spot_filepath,
 spotid=spot_filesuffix, ext=spot_fileext, overwrite=False)

(For now, only normally-oriented gridspots can be used, but in the
future you should be able to set rotated_spots=True to fit
45deg-rotated grid spots).

The default values for the spot file filenames and directories (on Dnah
at AMNH) can be found in the P1640.ini config file. I tend to write
a separate config file specifically for the reduction and define them
again there, with a custom directory if I want. An example reduction
config file will eventually be added to the repo.

Vet grid spots

We can run P1640_cube_checker in “spots” mode to check the spots.
Usage is similar to before except now you need to use the --spots
flag and specify the location of the spot file folder.

From IPython, there are two ways:

:::python
 import sys
 sys.path.append("..")
 import P1640_cube_checker
 good_spots = P1640_cube_checker.run_spot_checker(good_cubes, spot_path='shared_spot_folder/')
 or
 %run ../P1640_cube_checker.py --files {" ".join(good_cubes)} --spots --spot_path shared_spot_folder/

From bash, do: (note: check the value of good_cubes before you pass it,
make sure it got set properly)

:::bash
 good_cubes="copy names of vetted files here"
 python ../P1640_cube_checker --files ${good_cubes} --spots --spot_path shared_spot_folder

Again, you will be prompted Y/n for each cube. Y = keep it, N =
throw it out. At the end, you will be told all the files for which the
spot fitting FAILED and for which it succeeded. For these files, you can
either try to re-run the fitting, or (more likely) remove that cube from
the datacubes that get sent to PyKLIP.

When running in python mode, the variable good_spots stores the file
names for which you said the spot fitting succeeeded. These are the
files which you will use to run KLIP, and can be used to initialize the
P1640Data object (more below).

Run KLIP

Running KLIP on P1640 data is nearly identical to running it on GPI,
with the exception that you have to be careful to only use cubes that
have corresponding grid spot files. We’ll start off by assuming that the
variable filelist stores a list of the files that you want to
include in your reduction (i.e. they passed all the vetting stages
above).

:::python
 import sys
 sys.path.append("../../../../")
 import pyklip.instruments.P1640 as P1640
 dataset = P1640.P1640Data(filelist, spot_directory="shared_spot_folder/")
 import pyklip.parallelized as parallelized
 parallelized.klip_dataset(dataset, outputdir="output/", fileprefix="woohoo", annuli=5, subsections=4, movement=3, numbasis=[1,20,100], calibrate_flux=False, mode="SDI")

This will run the KLIP PSF subtraction algorithm. The resulting images
are stored in the dataset.output field and written as FITS files to
the output directory with the file prefix you provided. The P1640 output
header format is that the first header stores the KLIP parameters, and
the subsequent headers store copies of the headers from the original
FITS files that were combined in this analysis. One file containing a
datacube is written for each KL cutoff specified.

Calibrating Algoirthm Throughput & Generating Contrast Curves

Due to oversubtraction and selfsubtraction (see Pueyo (2016) [http://arxiv.org/abs/1604.06097] for a good
explaination), the shape, flux, and spectrum of the signal of a planet or disk is distoed by PSF subtraction.
To calibrate algorithm throughput after KLIP in this tutorial, we will use the standard fake injection technique,
which basically is injecting fake planets/disks in the data of known shape, flux, and spectrum to measure the
algorithm throughput.

In this tutorial, we will calibrate the throughput of the previous exmaple (Basic KLIP Tutorial with GPI) for the
purpose of generating a contrast curve. Note that this same general process can be used to character a planet or disk
(e.g. measure astrometry and spectrum of an imaged exoplanet).

Contrast Curves

To measure the contrast (ignoring algorithm throughput), we use pyklip.klip.meas_contrast(), which assumes
azimuthally symmetric noise and computes the 5σ noise level at each separation. It uses a Gaussian cross correlation to
compute the noise as a small optimization to smooth out high frequency noise (since we know our planet is not going to
be smaller than on λ/D scales). It also corrects for small number statistics (i.e. by assuming a Student’s
t-distribution rather than a Gaussian).
This will give us a sense of the contrast to inject fake planets into the data (algorithm throughput is ~50%).
We are calculating broadband contrast so we want to spectrally-collapsed data (if applicable). You can do this
by reading back in the KL mode cube and picking a KL mode cutoff. (The KL mode cutoff is chosen to maximize planet SNR, which we won’t discuss here, but can be determined with fake planet injection.)

Here we will show an example using the pyKLIP output of GPI data, and using KL modes.

import astropy.io.fits as fits
hdulist = fits.open("myobject-KLmodes-all.fits")
pick the 20 KL mode cutoff frame out of [1,20,50,100]
kl20frame = hdulist[1].data[1]
dataset_center = [klip_hdulist[1].header['PSFCENTX'], klip_hdulist[1].header['PSFCENTY']]

Then, a convenient pyKLIP function will calculate the contrast, accounting for small
sample statistics. We are picking 1.1 arcseconds as the outer boundary of our contrast curve.
The low_pass_filter option specifies the size of the Gaussian to use in our cross correlation to smooth low frequency noise.
It is typically smaller than the size of the PSF since self-subtraction from KLIP decreases the PSF size.
We also need to specify the FWHM of the PSF in order to account for small sample statistics. It also determines
the spacing the contrast curve returns. The function samples the noise with a spacing of FWHM/2.

For our example dataset on Beta Pic, we also need to mask out the planet, Beta Pic b, so that it doesn’t bias our noise estimate.

import numpy as np
import pyklip.klip as klip
import pyklip.instruments.GPI as GPI

dataset_iwa = GPI.GPIData.fpm_diam['J']/2 # radius of occulter
dataset_owa = 1.5/GPI.GPIData.lenslet_scale # 1.5" is the furtherest out we will go
dataset_fwhm = 3.5 # fwhm of PSF roughly
low_pass_size = 1. # pixel, corresponds to the sigma of the Gaussian

mask beta Pic b
first get the location of the planet from Wang+ (2016)
betapicb_sep = 30.11 # pixels
betapicb_pa = 212.2 # degrees
betapicb_x = betapicb_sep * -np.sin(np.radians(betapicb_pa)) + dataset_center[0]
betapicb_y = betapicb_sep * np.cos(np.radians(betapicb_pa)) + dataset_center[1]
now mask the data
ydat, xdat = np.indices(kl20frame.shape)
distance_from_planet = np.sqrt((xdat - betapicb_x)**2 + (ydat - betapicb_y)**2)
kl20frame[np.where(distance_from_planet <= 2*dataset_fwhm)] = np.nan

contrast_seps, contrast = klip.meas_contrast(kl20frame, dataset_iwa, dataset_owa, dataset_fwhm, center=dataset_center, low_pass_filter=low_pass_size)

Now we can plot what the contrast curve (missing a calibration for algorithm throughput) looks like.

[image: _images/contrast_nothroughput.png]

Injecting Fake Planets

KLIP naturally subtracts out planet flux due to over-subtraction and self-subtraction.
To calibrate our sensitivity to planets, we need to inject some fake planets at known brightness into our data to calibrate KLIP attenuation.
In this tutorial, we only only inject a few fakes once into the data just to demonstrate the technique with pyKLIP. For your
data, it is suggested you inject many planets to explore the attenuation factor as a function of brightness,
separation, and KLIP parameters (more aggressive reductions increase attenuation of flux due to KLIP).Fake planets are free, so the more the merrier!

First, let’s read in the data again. This is the same dataset as you read in to run KLIP the first time.

import glob

filelist = glob.glob("path/to/dataset/*.fits")
dataset = GPI.GPIData(filelist, highpass=True)

Now we’ll inject 12 fake planets in each cube. We’ll do this one fake planet at a time using pyklip.fakes.inject_planet(). As we get further out in the image, we will inject fainter planets, since the throughput does vary with planet flux, so we want the fake planets to be just around the detection threshold (slightly above is preferably to reduce noise). Since we specify a fake planet’s location by it’s separation and position angle, we need to know the orientation of the sky on the image using the frames’ WCS headers. The planets also are injected in raw data units, we need to convert the planet flux from contrast to DN for GPI. For other instruments, each should have its flux calibration and thus own method to convert between data units and contrast.

import pyklip.fakes as fakes

three sets, planets get fainter as contrast gets better further out
input_planet_fluxes = [1e-4, 1e-5, 5e-6]
seps = [20, 40, 60]
fwhm = 3.5 # pixels, approximate for GPI

for input_planet_flux, sep in zip(input_planet_fluxes, seps):
 # inject 4 planets at that separation to improve noise
 # fake planets are injected in data number, not contrast units, so we need to convert the flux
 # for GPI, a convenient field dn_per_contrast can be used to convert the planet flux to raw data numbers
 injected_flux = input_planet_flux * dataset.dn_per_contrast
 for pa in [0, 90, 180, 270]:
 fakes.inject_planet(dataset.input, dataset.centers, injected_flux, dataset.wcs, sep, pa, fwhm=fwhm)

Now we’ll run KLIP using the example same parameters on this dataset with fake planets.

import pyklip.parallelized as parallelized

parallelized.klip_dataset(dataset, outputdir="path/to/save/dir/", fileprefix="myobject-withfakes",
 annuli=9, subsections=4, movement=1, numbasis=[1,20,50,100],
 calibrate_flux=True, mode="ADI+SDI")

Now, the resulting KLIP dataset should have 12 more planets in it! For the Beta Pic dataset, we actually have 13 planets ;).

[image: _images/betpic_j_withfakes.png]
We now will read in the output of the KLIP reducation with fake planets. Since we’re using the 20 KL mode cutoff frame for our contrast curve, we want the same cutoff for our reduction with fake planets.

kl_hdulist = fits.open("myobject-withfakes-KLmodes-all.fits")
dat_with_fakes = kl_hdulist[1].data[1]
dat_with_fakes_centers = [kl_hdulist[1].header['PSFCENTX'], kl_hdulist[1].header['PSFCENTY']]

We will measure the flux of each fake in the reduced image using pyklip.fakes.retrieve_planet_flux(). Our strategy here is to assume the throughput is constant azimuthally, and for each 4 planets at a separation, average their fluxes together to reduce noise. Note that we need to again specify a WCS header to tell the code where to look for the planet in the image. You can grab that from the header of the reduced image, or we will be lazy here are use the dataset.wcs field from our fake dataset, which automatically gets rotated after KLIP.

retrieved_fluxes = [] # will be populated, one for each separation

for input_planet_flux, sep in zip(input_planet_fluxes, seps):
 fake_planet_fluxes = []
 for pa in [0, 90, 270, 360]:
 fake_flux = fakes.retrieve_planet_flux(dat_with_fakes, dat_with_fakes_centers, dataset.wcs[0], sep, pa, searchrad=7)
 fake_planet_fluxes.append(fake_flux)
 retrieved_fluxes.append(np.mean(fake_planet_fluxes))

Now we can calibrate the contrast curves. We know what flux level we injected the planets into the data at. We now have measured the flux value of the planets at each separation, so we can now calculate the “algorithm throughput” which measures how much KLIP attenuates flux. Then for each location on the contrast curve, we will just use the closest fake planet injection separation to assume an algorithm throughput correction. This is why it is good in practice in inject fakes in as many places as possible, so that the fake planets better model the algorithm throughput at each separation.

fake planet output / fake planet input = throughput of KLIP
algo_throughput = np.array(retrieved_fluxes)/np.array(input_planet_fluxes) # a number less than 1 probably

corrected_contrast_curve = np.copy(contrast)
for i, sep in enumerate(contrast_seps):
 closest_throughput_index = np.argmin(np.abs(sep - seps))
 corrected_contrast_curve[i] /= algo_throughput[closest_throughput_index]

Finally, we get a calibrated contrast curve!

[image: _images/contrast_calibrated.png]

Bayesian KLIP-FM Astrometry (BKA)

This tutorial will provide the necessary steps to run the Bayesian KLIP-FM Astorometry technique (BKA)
that is described in Wang et al. (2016) [https://arxiv.org/abs/1607.05272] to obtain one milliarcsecond
astrometry on β Pictoris b.

Why BKA?

Astrometry of directly imaged exoplanets is challenging since PSF subtraction algorithms (like pyKLIP)
distort the PSF of the planet. Pueyo (2016) [http://arxiv.org/abs/1604.06097] provide a technique to
forward model the PSF of a planet through KLIP. Taking this forward model, you could fit it to the data
with MCMC, but you would underestimate your errors because the noise in direct imaging data is correlated
(i.e. each pixel is not independent). To account for the correlated nature of the noise, we use Gaussian
process regression to model and account for the correlated nature of the noise. This allows us to obtain
accurate astrometry and accurate uncertainties on the astrometry.

BKA Requirements

To run BKA, you need the additional packages installed, which should be available readily:

	emcee [http://dan.iel.fm/emcee/current/]

	corner [https://github.com/dfm/corner.py]

You also need the following pieces of data to forward model the data.

	Data to run PSF subtraction on

	A model or data of the instrumental PSF

	A good guess of the position of the planet (a center of light centroid routine should get the astrometry to a pixel)

	For IFS data, an estimate of the spectrum of the planet (it does not need to be very accurate, and 20% errors are fine)

Generating instrumental PSFs for GPI

A quick aside for GPI spectral mode data, here is how to generate the instrumental PSF from the satellite spots.

import glob
import numpy as np
import pyklip.instruments.GPI as GPI

read in the data into a dataset
filelist = glob.glob("path/to/dataset/*.fits")
dataset = GPI.GPIData(filelist)

generate instrumental PSF
boxsize = 25 # we want a 25x25 pixel box centered on the instrumental PSF
dataset.generate_psfs(boxrad=boxsize//2) # this function extracts the satellite spots from the data
now dataset.psfs contains a 37x25x25 spectral cube with the instrumental PSF
normalize the instrumental PSF so the peak flux is unity
dataset.psfs /= (np.mean(dataset.spot_flux.reshape([dataset.spot_flux.shape[0] / 37, 37]),
 axis=0)[:, None, None])

Here is an exmaple using three datacubes from the publicly available GPI data on beta Pic.
Note that the wings of the PSF are somewhat noisy, due to the fact the speckle noise
in J-band is high near the satellite spots. However, this should still give us an acceptable instrumental PSF.

[image: _images/betpic_j_instrumental_psf.png]

Forward Modelling the PSF with KLIP-FM

With an estimate of the planet position, the instrumental PSF, and, if applicable, an estimate of the spectrum,
we can use the pyklip.fm implementation of KLIP-FM and pyklip.fmlib.fmpsf.FMPlanetPSF extension to
forward model the PSF of a planet through KLIP.

First, let us initalize pyklip.fmlib.fmpsf.FMPlanetPSF to forward model the planet in our data.

For GPI, we are using normalized copies of the satellite spots as our input PSFs, and because of that, we need to pass in
a flux conversion value, dn_per_contrast, that allows us to scale our guessflux in contrast units to data units. If
you are not using normalized PSFs, dn_per_contrast should be the factor that scales your input PSF to the flux of the
unocculted star. If your input PSF is already scaled to the flux of the stellar PSF, dn_per_contrast is optional
and should not actually be passed into the function.

setup FM guesses
You should change these to be suited to your data!
numbasis = np.array([1, 7, 100]) # KL basis cutoffs you want to try
guesssep = 30.1 # estimate of separation in pixels
guesspa = 212.2 # estimate of position angle, in degrees
guessflux = 5e-5 # estimated contrast
dn_per_contrast = your_flux_conversion # factor to scale PSF to star PSF. For GPI, this is dataset.dn_per_contrast
guessspec = your_spectrum # should be 1-D array with number of elements = np.size(np.unique(dataset.wvs))

initialize the FM Planet PSF class
import pyklip.fmlib.fmpsf as fmpsf
fm_class = fmpsf.FMPlanetPSF(dataset.input.shape, numbasis, guesssep, guesspa, guessflux, dataset.psfs,
 np.unique(dataset.wvs), dn_per_contrast, star_spt='A6',
 spectrallib=[guessspec])

Note

When executing the initializing of FMPlanetPSF, you will get a warning along the lines of
“The coefficients of the spline returned have been computed as the minimal norm least-squares solution of a
(numerically) rank deficient system.” This is completeness normal and expected, and should not be an issue.

Next we will run KLIP-FM with the pyklip.fm module. Before we run it, we will need to pick our
PSF subtraction parameters (see the Basic KLIP Tutorial with GPI for more details on picking KLIP parameters).
For our zones, we will run KLIP only on one zone: an annulus centered on the guessed location of the planet with
a width of 30 pixels. The width just needs to be big enough that you see the entire planet PSF.

PSF subtraction parameters
You should change these to be suited to your data!
outputdir = "." # where to write the output files
prefix = "betpic-131210-j-fmpsf" # fileprefix for the output files
annulus_bounds = [[guesssep-15, guesssep+15]] # one annulus centered on the planet
subsections = 1 # we are not breaking up the annulus
padding = 0 # we are not padding our zones
movement = 4 # we are using an conservative exclusion criteria of 4 pixels

run KLIP-FM
import pyklip.fm as fm
fm.klip_dataset(dataset, fm_class, outputdir=outputdir, fileprefix=prefix, numbasis=numbasis,
 annuli=annulus_bounds, subsections=subsections, padding=padding, movement=movement)

This will now run KLIP-FM, producing both a PSF subtracted image of the data and a forward-modelled PSF of the planet
at the gussed location of the planet. The PSF subtracted image as the “-klipped-” string in its filename, while the
forward-modelled planet PSF has the “-fmpsf-” string in its filename.

Fitting the Astrometry using MCMC and Gaussian Processes

Now that we have the forward-modeled PSF and the data, we can fit them in a Bayesian framework
using Gaussian processes to model the correlated noise and MCMC to sample the posterior distribution.

First, let’s read in the data from our previous forward modelling. We will take the collapsed
KL mode cubes, and select the KL mode cutoff we want to use. For the example, we will use
7 KL modes to model and subtract off the stellar PSF.

import os
import astropy.io.fits as fits
read in outputs
output_prefix = os.path.join(outputdir, prefix)
fm_hdu = fits.open(output_prefix + "-fmpsf-KLmodes-all.fits")
data_hdu = fits.open(output_prefix + "-klipped-KLmodes-all.fits")

get FM frame, use KL=7
fm_frame = fm_hdu[1].data[1]
fm_centx = fm_hdu[1].header['PSFCENTX']
fm_centy = fm_hdu[1].header['PSFCENTY']

get data_stamp frame, use KL=7
data_frame = data_hdu[1].data[1]
data_centx = data_hdu[1].header["PSFCENTX"]
data_centy = data_hdu[1].header["PSFCENTY"]

get initial guesses
guesssep = fm_hdu[0].header['FM_SEP']
guesspa = fm_hdu[0].header['FM_PA']

We will generate a pyklip.fitpsf.FMAstrometry object that we handle all of the fitting processes.
The first thing we will do is create this object, and feed it in the data and forward model. It will use them to
generate stamps of the data and forward model which can be accessed using fma.data_stmap and fma.fm_stamp
respectively. When reading in the data, it will also generate a noise map for the data stamp by computing the standard
deviation around an annulus, with the planet masked out

import pyklip.fitpsf as fitpsf
create FM Astrometry object
fma = fitpsf.FMAstrometry(guesssep, guesspa, 13)

generate FM stamp
padding should be greater than 0 so we don't run into interpolation problems
fma.generate_fm_stamp(fm_frame, [fm_centx, fm_centy], padding=5)

generate data_stamp stamp
not that dr=4 means we are using a 4 pixel wide annulus to sample the noise for each pixel
exclusion_radius excludes all pixels less than that distance from the estimated location of the planet
fma.generate_data_stamp(data_frame, [data_centx, data_centy], dr=4, exclusion_radius=10)

Next we need to choose the Gaussian process kernel. We currently only support the Matern (ν=3/2)
and square exponential kernel, so we will pick the Matern kernel here. Note that there is the option
to add a diagonal (i.e. read/photon noise) term to the kernel, but we have chosen not to use it in this
example. If you are not dominated by speckle noise (i.e. around fainter stars or further out from the star),
you should enable the read noies term.

set kernel, no read noise
corr_len_guess = 3.
corr_len_label = r"l"
fma.set_kernel("matern32", [corr_len_guess], [corr_len_label])

Now we need to set bounds on our priors for our MCMC. We are going to be simple and use uninformative priors.
The priors in the x/y posible will be flat in linear space, and the priors on the flux scaling and kernel parameters
will be flat in log space, since they are scale paramters. In the following function below, we will set the boundaries
of the priors. The first two values are for x/y and they basically say how far away (in pixels) from the
guessed position of the planet can the chains wander. For the rest of the parameters, the values say how many ordres
of magnitude can the chains go from the guessed value (e.g. a value of 1 means we allow a factor of 10 variation
in the value).

set bounds
x_range = 1.5 # pixels
y_range = 1.5 # pixels
flux_range = 1. # flux can vary by an order of magnitude
corr_len_range = 1. # between 0.3 and 30
fma.set_bounds(x_range, y_range, flux_range, [corr_len_range])

Finally, we are set to run the MCMC sampler (using the emcee package). Here we have provided a wrapper to already
set up the likelihood and prior. All we want to do is specify the number of walkers, number of steps each walker takes,
and the number of production steps the walkers take. We also can specify the number of threads to use.
If you have not turned BLAS and MKL off, you probably only want one or a few threads, as MKL/BLAS automatically
parallelizes the likelihood calculation, and trying to parallelize on top of that just creates extra overhead.

run MCMC fit
fma.fit_astrometry(nwalkers=100, nburn=200, nsteps=800, numthreads=1)

When the MCMC finishes running, we have our answer for the location of the planet in the data.
Here are some fields to access this information:

	fma.RA_offset: RA offset of the planet from the star as determined by the median of the marginalized posterior

	fma.Dec_offset: Dec offset of the plnaet from the star as determined by the median of the marginalized posterior

	fma.RA_offset_1sigma: 16th and 84th percentile values for the RA offset of the planet

	fma.Dec_offset_1sigma: 16th and 84th percentile values for the Dec offset of the planet

	fma.flux, fma.flux_1sigma: same thing except for the flux of the planet

	fma.covar_param_bestfits, fma.covar_param_1sigma: same thing for the hyperparameters on the Gaussian process kernel. These are both kept in a list with length equal to the number of hyperparameters.

	fma.sampler: this is the emcee.EnsembleSampler object which contains the full chains and other MCMC fitting information

The RA offset and Dec offset are what we are interested in for the purposes of astrometry. The flux scaling
paramter (α) and the correlation length (l) are hyperparameters we marginalize over. First,
we want to check to make sure all of our chains have converged by plotting them. As long as they have
settled down (no large scale movements), then the chains have probably converged.

import matplotlib.pylab as plt
fig = plt.figure(figsize=(10,8))

grab the chains from the sampler
chain = fma.sampler.chain

plot RA offset
ax1 = fig.add_subplot(411)
ax1.plot(chain[:,:,0].T, '-', color='k', alpha=0.3)
ax1.set_xlabel("Steps")
ax1.set_ylabel(r"Δ RA")

plot Dec offset
ax2 = fig.add_subplot(412)
ax2.plot(chain[:,:,1].T, '-', color='k', alpha=0.3)
ax2.set_xlabel("Steps")
ax2.set_ylabel(r"Δ Dec")

plot flux scaling
ax3 = fig.add_subplot(413)
ax3.plot(chain[:,:,2].T, '-', color='k', alpha=0.3)
ax3.set_xlabel("Steps")
ax3.set_ylabel(r"α")

plot hyperparameters.. we only have one for this example: the correlation length
ax4 = fig.add_subplot(414)
ax4.plot(chain[:,:,3].T, '-', color='k', alpha=0.3)
ax4.set_xlabel("Steps")
ax4.set_ylabel(r"l")

Here is an example using three cubes of public GPI data on beta Pic.

[image: _images/betpic_j_bka_chains.png]
We can also plot the corner plot to look at our posterior distribution and correlation between parameters.

fig = plt.figure()
fig = fma.make_corner_plot(fig=fig)

[image: _images/betpic_j_bka_corner.png]
Hopefully the corner plot does not contain too much structure (the posteriors should be roughly Gaussian).
In the example figure from three cubes of GPI data on beta Pic, the residual speckle noise has not been
very whitened, so there is some asymmetry in the posterior, which represents the local strucutre of
the speckle noise. These posteriors should become more Gaussian as we add more data and whiten the speckle noise.
And finally, we can plot the visual comparison of our data, best fitting model, and residuals to the fit.

fig = plt.figure()
fig = fma.best_fit_and_residuals(fig=fig)

And here is the example from the three frames of beta Pic b J-band GPI data:

[image: _images/betpic_j_bka_comparison.png]
The data and best fit model should look pretty close, and the residuals hopefully do not show any obvious strcuture that
was missed in the fit. The residual ampltidue should also be consistent with noise. If that is the case, we can use the
best fit values for the astrometry of this epoch. Remember that the 1-sigma values given here are just the statistical
uncertainity on the location of the planet. You will need to include more uncertainties such as the location of the
star and astrometric calibration uncertainties to obtain your full astrometric error bar. The flux values should in
theory measure the flux of the planet, but that is out of the scope of this tutorial. Here, we print out our confidence
on just the location of the planet in the image.

print("Planet RA offset is at {0} with a 1-sigma range of {1}".format(fma.RA_offset, fma.RA_offset_1sigma))
print("Planet Dec offset is at {0} with a 1-sigma range of {1}".format(fma.Dec_offset, fma.Dec_offset_1sigma))

Forward Model Matched Filter (FMMF) Tutorial with GPI

The Forward Model Matched Filter (FMMF) is an algorithm aimed at improved exo-planet detection for direct imaging.
The current implementation only works for GPI and this tutorial will explain how to use it.
A reference paper J.-B. Ruffio et al. 2016/2017 with the description of the method is currently in preparation.

Note

If you ask me enough, I will try to make the code more general to work for different instruments.

Input Data

What are the input data needed to run the FMMF pyklip implementation.

Running FMMF

How to run the code.

Disk Foward Modelling Tutorial with GPI

Disk forward modelling is intended for use in cases where you would
like to model a variety of different model disks on the same dataset. This
can be used with an MCMC that is fitting for model parameters. It
works by saving the KLIP basis vectors in a file so they do not have
to be recomputed every time.

Running

How to use:

import glob
import pyklip.parallelized.GPI as GPI
from pyklip.fmlib.diskfm import DiskFM
import pyklip.fm as FM

filelist = glob.glob("path/to/dataset/*.fits")
dataset = GPI.GPIData(filelist)
model = [some 2D image array]

For a single run:

diskobj = DiskFM([n_files, data_xshape, data_yshape], numbasis, dataset, model_disk, annuli = 2, subsections = 1)

If you would like to forward model multiple models on a dataset, then you will save the eigenvalues and eigenvectors:

diskobj = DiskFM([n_files, data_xshape, data_yshape], numbasis, dataset, model_disk, annuli = 2, subsections = 1, basis_file_name = 'klip-basis.p', save_basis = True, load_from_basis = False)

In both cases you then run:

fmout = fm.klip_dataset(dataset, diskobj, numbasis = numbasis,
annuli = 2, subsections = 1, mode = 'ADI')

Note that in the case that annuli = 1, you will need to set padding =
0 in klip_dataset

In order to forward model another disk:

diskobj = DiskFM([n_files, data_xshape, data_yshape], numbasis, dataset, model_disk, annuli = 2, subsections = 1, basis_file_name = 'klip-basis.p', load_from_basis = True)
diskobj.update_disk(newmodel)
fmout = diskobj.fm_parallelized()

Current Works in Progress

	Does not support SDI mode

	Is not parallized

Developing for pyKLIP

Docker

One very useful tool to have is a local build environment of the pyKLIP package for testing and validation purposes.
We will be using a software container platform called Docker and this tutorial will provide a brief overview on what it
is, how to set it up, and how to use it for pyKLIP.

Here you will find everything you need to know about Docker for pyKLIP.

	Setup
	Installation

	Setup

	Working With Docker
	Using Local Files

	Deleting Images and Containers

	Sharing Images
	Creating Images

	Uploading Images

Tests

Here we will lay out the testing infrastructure used for pyKLIP.

	Testing
	Creating Tests

	Documenting Tests

	Running Tests

	Code Coverage
	Coverage

	Coveralls

Setup

Here you will learn how to install and setup your Docker.

Installation

We will be using the community edition of Docker.

For Ubuntu Linux

sudo apt-get update
sudo apt-get install docker-ce

For all other OSes, installation instructions and requirements can be found here [https://docs.docker.com/engine/installation/].

Setup

From a fresh install, there are a few steps to getting your container up and running.

1. Download and run the pyKLIP image. You can do this by pulling and running, but simply running the pyKLIP image will
do both steps in one. Executing the run command will first check your local machine for the appropriate images and use
them if Docker finds them, or download them from Docker Hub if it fails. For now we’ll start with the pull command:

$ docker pull simonko/pyklip

2. From here, to check if the appropriate image has been set up use the docker images command, and you should get
something similar to the following

$ docker images

REPOSITORY TAG IMAGE ID CREATED SIZE
simonko/pyklip latest e9a584c685bb 4 hours ago 2.37 GB

3. Running the command below creates a container of the pyklip image and gives us an interactive shell to interact with
container. The -i -t flags allows for interactive mode and allocates a pseudo-tty for the container respectively.
This is usually combined into the flag -it. If you don’t specify a tag, it’ll generate some random name for you.
(ex. sad_lovelace, agitated_saha, ecstatic_pare, etc)

$ docker run -it simonko/pyklip:latest /bin/bash

4. When you’re done with the container, simply type exit and your session will end. If you get the message that
states there is a process running, simply type exit again and it’ll exit the session.
5. After you’ve made your container you should be able to see it with

$ docker ps -a

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
c6695e4d9a63 simonko/pyklip:latest "/usr/bin/tini -- ..." 6 seconds ago Exited (0) 3 seconds ago zealous_goldwasser

6. To get into the container, you have to first start the container again, then use the attach command to get back into
the interactive shell.

$ docker start <container name>
$ docker attach <container name>

For a very basic tutorial on Docker and how to use it, check out the Docker docs and tutorials here [https://docs.docker.com/engine/getstarted/step_three/#step-2-run-the-whalesay-image]. There are a lot of helpful tutorials and information there.

Working With Docker

Here you will learn how some basics on working with Docker.

Using Local Files

Once you have your image, you can cp over local files into the container. To do this you have to use the attach command and -d flag like so

$ docker run -it -d simonko/pyklip:latest

exit

$ docker cp <source file/directory> <container name>:<destination>

$ docker start <container name>

$ docker attach <container name>

It should be noted that if the specified destination does not exist, it will create the destination for you. For example if I were to do the following

$ docker cp <somefile/directory> zealous_goldwasser:/pyklip

inside the zealous_goldwasser container and it did not already have a pyklip directory, docker would create the directory for me and place the file in it, just like the normal cp command.

Deleting Images and Containers

You may find that your docker is getting a bit cluttered after playing around with it. The following section will show you how to delete images and containers. You can also refer to this cheat sheet [https://www.digitalocean.com/community/tutorials/how-to-remove-docker-images-containers-and-volumes#a-docker-cheat-sheet] for more on deleting images and containers. The below is just a few basic and useful commands.

Deleting Containers

To delete a container, first locate the container(s) you wish to delete, then use docker rm <ID or NAME> to delete:

$ docker ps -a

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
c6695e4d9a63 simonko/pyklip:latest "/usr/bin/tini -- ..." 6 seconds ago Exited (0) 3 seconds ago zealous_goldwasser

$ docker rm <container ID (c6695e4d9a63) or Name (zealous goldwasser)>

To delete multiple containers at once use the filter flag. For example, if you want to delete all exited containers

$ docker rm $(docker ps -a -f status=exited -q)

You can also find all containers all exited containers using just the command in the parenthesis without the -q flag. This is particularly useful if there are many exited containers and you don’t remember which ones you wanted to delete.

Deleting Images

To delete your images first you must find which ones you wish to delete. It should also be noted that to delete an image, there can be no containers associated with it. You must delete all containers from the image before deleting the image.

$ docker images

REPOSITORY TAG IMAGE ID CREATED SIZE
pyklip-pipeline latest e9a584c685bb 13 days ago 2.37 GB
simonko/pyklip latest e9a584c685bb 13 days ago 2.37 GB
localrepo latest dc74a96e5ef0 2 weeks ago 2.25 GB
ubuntu latest 0ef2e08ed3fa 3 weeks ago 130 MB
continuumio/anaconda3 latest 26043756c44f 6 weeks ago 2.23 GB

$ docker rmi <repository name>

Note

Before you delete an image, all containers using the image must be DELETED, not exited.

To delete ALL of your images

$ docker rmi $(docker images -a -q)

Sharing Images

Here you will learn how to create and upload your own images onto Docker Hub for others to use.

Creating Images

In this section, you will learn how to create and upload your own image. To do this you need to make a dockerfile. If you wish to share the image for others to use, you need to create a Docker Hub account and push your image into a repository. This section will go over all of these steps. For a more detailed tutorial use this link [https://docs.docker.com/engine/getstarted/step_four/#step-4-run-your-new-docker-whale]. Otherwise here are the very basics.

Docker images are created from a set of commands in a dockerfile. What goes on this file is entirely up to you. Docker uses these commands to create an image, and it can be an entirely new one or an image based off of another existing image.

	
	Create a file and name it dockerfile. There are three basic commands that go on a dockerfile.

	
	FROM <Repository>:<Build> - This command will tell docker that this image is based off of another image. You can specify which build to use. To use the most up-to-date version of the image, use “latest” for build.

	RUN <Command> - This will run commands in a new layer and creates a new image. Typically used for installing necessary packages. You can have multiple RUN statements.

	CMD <Command> - This is the default command that will run once the image environment has been set up. You can only have ONE CMD statement.

For more information on RUN vs CMD here is a useful link [http://goinbigdata.com/docker-run-vs-cmd-vs-entrypoint/].

	After you’ve made your file run the following command to create your image

$ docker build -t <Image Name> <Path to Directory of Dockerfile>

The -t flag lets you name the image.

For example, the docker file used for the pyklip image I set up above (under the “Using Docker” section) is made using a dockerfile with the following content:

FROM continuumio/anaconda3:latest
RUN git clone https://bitbucket.org/pyKLIP/pyklip.git \
 && pip install coveralls \
 && pip install emcee \
 && pip install corner \
 && conda install -c https://conda.anaconda.org/astropy photutils

Uploading Images

	If you haven’t already, create a Docker Hub account [https://hub.docker.com/register/?utm_source=getting_started_guide&utm_medium=embedded_MacOSX&utm_campaign=create_docker_hub_account].

	After you’ve made your account, sign in and click on “Create Repository” and fill out the details. Make sure visibility is set to PUBLIC. Press create.

	Find your image ID. Using a previous example

$ docker images

REPOSITORY TAG IMAGE ID CREATED SIZE
pyklip-pipeline latest e9a584c685bb 13 days ago 2.37 GB

The image ID would be e9a584c685bb.

	Tag the image using

$ docker tag <Image ID> <DockerHub Account Name>/<Image Name>:<Version or Tag>

So for the pyklip pipeline image my command would be:

$ docker tag e9a584c685bb simonko/pyklip:latest

Check that the image has been tagged

$ docker images

REPOSITORY TAG IMAGE ID CREATED SIZE
pyklip-pipeline latest e9a584c685bb 13 days ago 2.37 GB
simonko/pyklip latest e9a584c685bb 13 days ago 2.37 GB

	Login to Docker on terminal

$ docker login

Username: *****
Password: *****
Login Succeeded

	Push your tagged image to docker hub

$ docker push <Repository Name>

	To pull from the repo now, all you have to do is run the repo. Docker will automatically pull from docker hub if it cannot find it locally.

Testing

Here we will go over how we test and what our testing infrastructure looks like for pyKLIP.

All of our tests can be found in the tests folder located in the base directory. In the folder, each module or feature gets it’s own test
file, and inside every file, each function is a different test for the module/feature.

The testing workflow for pyKLIP can be broken down into the following steps:

	Creating the tests

	Documenting the tests

	Running the tests

Creating Tests

All tests for pyKLIP can be found in the tests directory. We use pytest to run all of our tests in this directory.
All tests should be named “test_<module/purpose>”, and within the test files, each function should be named “test_<function
name>” to give an idea of what the test is for. The docstring for the function will go into detail as to what the test
is testing and a summary of how it works.

Our testing framework is organized so that each file tests an individual module or feature, and each function inside
each test file tests different aspects of the module/feature.

During the test, you may find it necessary to look at input or output files. In this case, all pathing should be agnostic of the directory structure outside of the pyKLIP folder.
It is suggested you first construct relative paths with respect to the current test file or the pyklip base directory, and then convert it to an absolute path before
using it in the function.

Some commands you may find helpful to find files:

	os.path.abspath(path) - returns the absolute path of the path provided

	os.path.dirname(path) - returns the name of the directory of the filepath provided.

	os.path.exists(path) - returns True if the path exists, False otherwise.

	os.path.sep = path separator. This is important because different OSes can have different path separators. For example Ubuntu Linux uses “/” while Windows uses “\”. This will take care of that.

	os.path.join(args) - returns a string with all the args separated by the appropriate path separator. For exmaple os.path.join("this", "is", "a", "path") would return "this/is/a/path" in Ubuntu Linux.

	__file__ - When used on its own, filepath of this python file. All python modules should also have this as an attirbute (e.g. pyklip.__file__)

Documenting Tests

Docstring for tests should follow the Google Python stylguide. Here is an exmaple of a function docstring:

"""
Summary of what your tests does goes here.

Args:
 param1: First param.
 param2: Second param.
 etc: etc

Returns:
 A description of what is returned.

Raises:
 Error: Exception.
"""

Use the following link [http://google.github.io/styleguide/pyguide.html?showone=Comments#Comments] for more details on
docstrings as well as Python style in general.

Running Tests

All of our tests are run automatically using pytest on a Docker image using a continuous integration build system (Bitbucket Pipelines).
This allows us to test pyKIP against a fresh and updated Python installation to ensure functionality is not broken and is comptable with the newest Python version.
If these terms seem unfamiliar, please refer to our Developing for pyKLIP page under the “Docker” section for more
information on Docker.

Here is a simple overview of the steps invovled in our automated testing framework:

	Bitbucket Pipelines reads our pipeline yml file to build the pipeline.

	Creates a docker image of the latest continuum anaconda3.

	Git clones the pyklip repository inside image.

	Installs all necessary packages.

	Runs tests using pytest on the test directory.

	Runs coverage analysis on our tests.

	Submits coverage report.

You can also run tests locally. This is typically useful when you make changes and want to check that the changes does not break any functionality.
It can also be useful if you write a test before writing the function code, and debug your code as you develop your function. That way, you will
have validation code from the start. In this case, you may not want to run the full suite of tests.

To simply run a single test you can either call the file directly using:

$ python <path/to/test file name>.py

To run all tests simply call:

$ pytest

The general command for pytest is as follows and there are two ways to invoke it:

$ python -m pytest [args]
$ pytest [args]

The above line will invoke pytest through the Python interpreter and add the current directory to sys.path. Otherwise
the second line is equivalent to the first.
There are many arguments and many different ways to use pytest. To run a single test simply enter the path to the test
file to run, to test all files in a directory use the path to the directory instead of a single file.
For more information on how to use pytest and some of its various usages, visit this link [https://docs.pytest.org/en/latest/usage.html#].

Code Coverage

Here we will go over code coverage, the analysis of what lines of code are tested in our tests.

Our code coverage is set up using two different tools - Coverage [https://coverage.readthedocs.io/en/coverage-4.3.4/]
and Coveralls [https://coveralls.io/]. Coverage is what we use to report the coverage statistics on our code and
tests, while Coveralls is the service we use to hook our reports to our pipeline, giving us a website to read coverage reports for each build.

Coverage

The documentation for the coverage package can be found here [https://coverage.readthedocs.io/en/coverage-4.3.4/index.html].

There are several different ways of reporting code coverage. I highly recommend reading the How Coverage.py Works [https://coverage.readthedocs.io/en/coverage-4.3.4/howitworks.html] section to learn what it means to say your tests
have x% code coverage.
Basically, there are three phases to the code coverage we use:

	Execution: Executes code and records information.

	Analysis: Analyzes codebase for total executable lines.

	Reporting: Combines execution and analysis phases to give coverage report.

When tests are run, coverage.py runs a trace function that records each file and line that is executed when a test is
run. It records this information in a JSON file (usually) named .coverage. This is called the execution phase.

During “Analysis,” coverage looks at the compiled python files to get the set of executable lines, and filters through to
leave out lines that shouldn’t be considered (e.g. blank lines, docstrings).

Finally, the Reporting phase handles the format in which to report its findings. There are several different outputs for the reports that you can use.

Configuration

Coverage also has a configuration file that allows the user to specify different options for coverage to handle, such as
multi-threading. The coverage configuration file is named .coveragerc by default. Information on the syntax for the
file can be found here [https://coverage.readthedocs.io/en/coverage-4.3.4/config.html]. Through the configuration
file you can specify lines to skip, ignoring specific errors, where to output the coverage report, etc.

Note

When running multiple coverage reports or using the multi-thread option, the command coverage combine is useful
in that it will combine all the reports into one. Multi-threading will spawn multiple processes which will each
have their own report so combining is very important for getting an accurate report. Note that all the reports must
be in the same directory when running the command.

As a final note, it is important to note that, although code coverage is a great tool to have and use, it is not by itself
enough to say the code is bug free. 100% code coverage, in the end, does not mean much. It simply means all the executable
lines of code have been run in one way or another, but there is no real way to test ALL possible branches and situations
your code can take, especially for larger code bases. Read this article [https://nedbatchelder.com/blog/200710/flaws_in_coverage_measurement.html]
for more on why code coverage can be flawed as well as a few examples. Just know that code coverage is a useful tool but
not fool-proof.

Coveralls

Coveralls is the web service used to track our code coverage and report on our automated pipeline builds. Every time
code is pushed to our Bitbucket repo and our tests are run, we first obtain our report using coverage, then we send the
report to coveralls which in turn organizes our report with each build and displays the information for us on both the
coverage website and a badge on the bitbucket repo.

For information on how to setup a coveralls hook to a repo, look here [https://github.com/coveralls-clients/coveralls-python].
For our pipeline, we use Bitbucket Pipelines, so use the “Usage (another CI)” section.

pyklip package

Subpackages

	pyklip.fmlib package
	Submodules

	pyklip.fmlib.diskfm module

	pyklip.fmlib.extractSpec module

	pyklip.fmlib.fmpsf module

	pyklip.fmlib.matchedFilter module

	pyklip.fmlib.nofm module

	Module contents

	pyklip.instruments package
	Subpackages
	pyklip.instruments.P1640_support package
	Submodules

	pyklip.instruments.P1640_support.P1640_cube_checker module

	pyklip.instruments.P1640_support.P1640_cube_checker_interactive module

	pyklip.instruments.P1640_support.P1640_spot_checker module

	pyklip.instruments.P1640_support.P1640contrast module

	pyklip.instruments.P1640_support.P1640cores module

	pyklip.instruments.P1640_support.P1640spots module

	pyklip.instruments.P1640_support.P1640utils module

	Module contents

	pyklip.instruments.utils package
	Submodules

	pyklip.instruments.utils.nair module

	Module contents

	Submodules

	pyklip.instruments.GPI module

	pyklip.instruments.Instrument module

	pyklip.instruments.NIRC2 module

	pyklip.instruments.P1640 module

	pyklip.instruments.SPHERE module

	Module contents

	pyklip.kpp package
	Subpackages
	pyklip.kpp.detection package
	Submodules

	pyklip.kpp.detection.CADIQuicklook module

	pyklip.kpp.detection.ROC module

	pyklip.kpp.detection.detection module

	pyklip.kpp.detection.quicklook module

	Module contents

	pyklip.kpp.metrics package
	Submodules

	pyklip.kpp.metrics.FMMF module

	pyklip.kpp.metrics.crossCorr module

	pyklip.kpp.metrics.shapeOrMF module

	Module contents

	pyklip.kpp.stat package
	Submodules

	pyklip.kpp.stat.contrast module

	pyklip.kpp.stat.contrastFMMF module

	pyklip.kpp.stat.stat module

	pyklip.kpp.stat.statPerPix module

	pyklip.kpp.stat.statPerPix_utils module

	pyklip.kpp.stat.stat_utils module

	Module contents

	pyklip.kpp.utils package
	Submodules

	pyklip.kpp.utils.GOI module

	pyklip.kpp.utils.GPIimage module

	pyklip.kpp.utils.kppSuperClass module

	pyklip.kpp.utils.mathfunc module

	pyklip.kpp.utils.multiproc module

	Module contents

	Submodules

	pyklip.kpp.kppPerDir module

	Module contents

Submodules

pyklip.covars module

	
pyklip.covars.matern32(x, y, sigmas, corr_len)

	Generates a Matern (nu=3/2) covariance matrix that assumes x/y has the same correlation length

C_ij = sigma_i sigma_j (1 + sqrt(3) r_ij / l) exp(-sqrt(3) r_ij / l)

	Parameters:	
	x (np.array) – 1-D array of x coordinates

	y (np.array) – 1-D array of y coordinates

	sigmas (np.array) – 1-D array of errors on each pixel

	corr_len (float) – correlation length of the Matern function

	Returns:	2-D covariance matrix parameterized by the Matern function

	Return type:	cov (np.array)

	
pyklip.covars.sq_exp(x, y, sigmas, corr_len)

	Generates square exponential covariance matrix that assumes x/y has the same correlation length

C_ij = sigma_i sigma_j exp(-r_ij^2/[2 l^2])

	Parameters:	
	x (np.array) – 1-D array of x coordinates

	y (np.array) – 1-D array of y coordinates

	sigmas (np.array) – 1-D array of errors on each pixel

	corr_len (float) – correlation length (i.e. standard deviation of Gaussian)

	mode (string) – either “numpy”, “cython”, or None, specifying the implementation of the kernel.

	Returns:	2-D covariance matrix parameterized by the Matern function

	Return type:	cov (np.array)

pyklip.fakes module

	
pyklip.fakes.LSQ_gauss2d(planet_image, x_grid, y_grid, a, x_cen, y_cen, sig)

	Calculate the squared norm of the residuals of the model with the data.
Helper function for least square fit.
The model is a 2d symmetric gaussian.

	Parameters:	
	planet_image – stamp image (y,x) of the satellite spot.

	x_grid – x samples grid as given by meshgrid.

	y_grid – y samples grid as given by meshgrid.

	a – amplitude of the 2d gaussian

	x_cen – x center of the gaussian

	y_cen – y center of the gaussian

	sig – standard deviation of the gaussian

	Returns:	Squared norm of the residuals

	
pyklip.fakes.PSFcubefit(frame, xguess, yguess, searchrad=10, psfs_func_list=None, wave_index=None, residuals=False)

	Estimate satellite spot amplitude (peak value) by fitting a symmetric 2d gaussian.
Fit parameters: x,y position, amplitude, standard deviation (same in x and y direction)

	Parameters:	
	frame – the data - Array of size (y,x)

	xguess – x location to fit the 2d guassian to.

	yguess – y location to fit the 2d guassian to.

	searchrad – 1/2 the length of the box used for the fit

	psfs_func_list – List of spline fit function for the PSF_cube.

	wave_index – Index of the current wavelength. In [0,36] for GPI. Only used when psfs_func_list is not None.

	residuals – If True (Default = False) then calculate the residuals of the sat spot fit (gaussian or PSF cube).

	Returns:	
	scalar, Estimation of the peak flux of the satellite spot.

	ie Amplitude of the fitted gaussian.

	Return type:	returned_flux

	
pyklip.fakes.convert_pa_to_image_polar(pa, astr_hdr)

	Given a position angle (angle to North through East), calculate what
polar angle theta (angle from +X CCW towards +Y) it corresponds to

	Parameters:	
	pa – position angle in degrees

	astr_hdr – wcs astrometry header (astropy.wcs)

	Returns:	polar angle in degrees

	Return type:	theta

	
pyklip.fakes.convert_polar_to_image_pa(theta, astr_hdr)

	Reversed engineer from covert_pa_to_image_polar by JB. Actually JB doesn’t quite understand how it works...

	Parameters:	
	theta – parallactic angle in degrees

	astr_hdr – wcs astrometry header (astropy.wcs)

	Returns:	polar angle in degrees

	Return type:	theta

	
pyklip.fakes.gauss2d(x0, y0, peak, sigma)

	2d symmetric guassian function for guassfit2d

	Parameters:	
	x0,y0 – center of gaussian

	peak – peak amplitude of guassian

	sigma – stddev in both x and y directions

	
pyklip.fakes.gaussfit2d(frame, xguess, yguess, searchrad=5, guessfwhm=3, guesspeak=1, refinefit=True)

	Fits a 2d gaussian to the data at point (xguess, yguess)

	Parameters:	
	frame – the data - Array of size (y,x)

	xguess,yguess – location to fit the 2d guassian to (should be pretty accurate)

	searchrad – 1/2 the length of the box used for the fit

	guessfwhm – approximate fwhm to fit to

	guesspeak – approximate flux

	refinefit – whether to refine the fit of the position of the guess

	Returns:	the peakflux of the gaussian
fwhm: fwhm of the PFS in pixels
xfit: x position (only chagned if refinefit is True)
yfit: y position (only chagned if refinefit is True)

	Return type:	peakflux

	
pyklip.fakes.gaussfit2dLSQ(frame, xguess, yguess, searchrad=5, fit_centroid=False, residuals=False)

	Estimate satellite spot amplitude (peak value) by fitting a symmetric 2d gaussian.
Fit parameters: x,y position, amplitude, standard deviation (same in x and y direction)

	Parameters:	
	frame – the data - Array of size (y,x)

	xguess – x location to fit the 2d guassian to.

	yguess – y location to fit the 2d guassian to.

	searchrad – 1/2 the length of the box used for the fit

	fit_centroid – If False (default), disable the centroid fit and only fit the amplitude and the standard deviation

	residuals – If True (Default = False) then calculate the residuals of the sat spot fit (gaussian or PSF cube).

	Returns:	
	scalar, estimation of the peak flux of the satellite spot.

	ie Amplitude of the fitted gaussian.

	Return type:	returned_flux

	
pyklip.fakes.inject_disk(frames, centers, inputfluxes, astr_hdrs, pa, fwhm=3.5)

	Injects a fake disk into a dataset

	Parameters:	
	frames – array of (N,y,x) for N is the total number of frames

	centers – array of size (N,2) of [x,y] coordiantes of the image center

	intputfluxes – array of size N of the peak flux of the fake disk in each frame OR
array of 2-D models (North up East left) to inject into the data.

(Disk is assumed to be centered at center of image)

	astr_hdrs – array of size N of the WCS headers

	pa – position angles angle (in degrees) of disk plane

	fwhm – if injecting a Gaussian disk (i.e inputfluxes is an array of floats), fwhm of Gaussian

	Returns:	saves result in input “frames” variable

	
pyklip.fakes.inject_planet(frames, centers, inputflux, astr_hdrs, radius, pa, fwhm=3.5, thetas=None, stampsize=None)

	Injects a fake planet into a dataset either using a Gaussian PSF or an input PSF

	Parameters:	
	frames – array of (N,y,x) for N is the total number of frames

	centers – array of size (N,2) of [x,y] coordiantes of the image center

	inputflux – EITHER array of size N of the peak flux of the fake planet in each frame (will inject a Gaussian PSF)
OR array of size (N,psfy,psfx) of template PSFs. The brightnesses should be scaled and the PSFs
should be centered at the center of each of the template images

	astr_hdrs – array of size N of the WCS headers

	radius – separation of the planet from the star

	pa – position angle (in degrees) of planet

	fwhm – fwhm (in pixels) of gaussian

	thetas – ignore PA, supply own thetas (CCW angle from +x axis toward +y)
array of size N

	stampsize – in pixels, the width of the square stamp to inject the image into. Defaults to 3*fwhm if None

	Returns:	saves result in input “frames” variable

	
pyklip.fakes.retrieve_planet(frames, centers, astr_hdrs, sep, pa, searchrad=7, guessfwhm=3.0, guesspeak=1, refinefit=True, thetas=None)

	Retrives the planet properties from a series of frames given a separation and PA

	Parameters:	
	frames – frames of data to retrieve planet. Can be a single 2-D image ([y,x]) for a series/cube ([N,y,x])

	centers – coordiantes of the image center. Can be [2]-element lst or an array that matches array of frames [N,2]

	astr_hdrs – astr_hdrs, can be a single one or an array of N of them

	sep – radial distance in pixels

	PA – parallactic angle in degrees

	searchrad – 1/2 the length of the box used for the fit

	guessfwhm – approximate fwhm to fit to

	guesspeak – approximate flux

	refinefit – whether or not to refine the positioning of the planet

	thetas – ignore PA, supply own thetas (CCW angle from +x axis toward +y)
single number or array of size N

	Returns:	(peakflux, x, y, fwhm). A single tuple if one frame passed in. Otherwise an array of tuples

	Return type:	measured

	
pyklip.fakes.retrieve_planet_flux(frames, centers, astr_hdrs, sep, pa, searchrad=7, guessfwhm=3.0, guesspeak=1, refinefit=False, thetas=None)

	Retrives the planet flux from a series of frames given a separation and PA

	Parameters:	
	frames – frames of data to retrieve planet. Can be a single 2-D image ([y,x]) for a series/cube ([N,y,x])

	centers – coordiantes of the image center. Can be [2]-element lst or an array that matches array of frames [N,2]

	astr_hdrs – astr_hdrs, can be a single one or an array of N of them

	sep – radial distance in pixels

	PA – parallactic angle in degrees

	searchrad – 1/2 the length of the box used for the fit

	guessfwhm – approximate fwhm to fit to

	guesspeak – approximate flux

	refinefit – whether or not to refine the positioning of the planet

	thetas – ignore PA, supply own thetas (CCW angle from +x axis toward +y)
single number or array of size N

	Returns:	
	either a single peak flux or an array depending on whether a single frame or multiple frames

	where passed in

	Return type:	peakflux

pyklip.fitpsf module

	
class pyklip.fitpsf.FMAstrometry(guess_sep, guess_pa, fitboxsize)

	Bases: object

Base class to perform astrometry on direct imaging data_stamp using MCMC and GP regression

	
best_fit_and_residuals(fig=None)

	Generate a plot of the best fit FM compared with the data_stamp and also the residuals
:param fig: if not None, a matplotlib Figure object
:type fig: matplotlib.Figure

	Returns:	the Figure object. If input fig is None, function will make a new one

	Return type:	fig (matplotlib.Figure)

	
fit_astrometry(nwalkers=100, nburn=200, nsteps=800, save_chain=True, chain_output='bka-chain.pkl', numthreads=None)

	Run a Bayesian fit of the astrometry using MCMC
Saves to self.chian

	Parameters:	
	nwalkers – number of walkers

	nburn – numbe of samples of burn-in for each walker

	nsteps – number of samples each walker takes

	save_chain – if True, save the output in a pickled file

	chain_output – filename to output the chain to

	numthreads – number of threads to use

Returns:

	
generate_data_stamp(data, data_center, data_wcs=None, noise_map=None, dr=4, exclusion_radius=10)

	Generate a stamp of the data_stamp ~centered on planet and also corresponding noise map
:param data: the final collapsed data_stamp (2-D)
:param data_center: location of star in the data_stamp
:param data_wcs: sky angles WCS object. To rotate the image properly [NOT YET IMPLMETNED]

if None, data_stamp is already rotated North up East left

	Parameters:	
	noise_map – if not None, noise map for each pixel in the data_stamp (2-D).
if None, one will be generated assuming azimuthal noise using an annulus widthh of dr

	dr – width of annulus in pixels from which the noise map will be generated

	exclusion_radius – radius around the guess planet location which doens’t get factored into noise estimate

Returns:

	
generate_fm_stamp(fm_image, fm_center=None, fm_wcs=None, extract=True, padding=5)

	Generates a stamp of the forward model and stores it in self.fm_stamp
:param fm_image: full imgae containing the fm_stamp
:param fm_center: [x,y] center of image (assuing fm_stamp is located at sep/PA) corresponding to guess_sep and guess_pa
:param fm_wcs: if not None, specifies the sky angles in the image. If None, assume image is North up East left
:param extract: if True, need to extract the forward model from the image. Otherwise, assume the fm_stamp is already

centered in the frame (fm_image.shape // 2)

	Parameters:	padding – number of pixels on each side in addition to the fitboxsize to extract to pad the fm_stamp
(should be >= 1)

Returns:

	
make_corner_plot(fig=None)

	Generate a corner plot of the posteriors from the MCMC
:param fig: if not None, a matplotlib Figure object

	Returns:	the Figure object. If input fig is None, function will make a new one

	Return type:	fig

	
set_bounds(dRA, dDec, df, covar_param_bounds, read_noise_bounds=None)

	Set bounds on Bayesian priors. All paramters can be a 2 element tuple/list/array that specifies
the lower and upper bounds x_min < x < x_max. Or a single value whose interpretation is specified below
If you are passing in both lower and upper bounds, both should be in linear scale!
:param dRA: Distance from initial guess position in pixels. For a single value, this specifies the largest distance

form the initial guess (i.e. RA_guess - dRA < x < RA_guess + dRA)

	Parameters:	
	dDec – Same as dRA except with Dec

	df – Flux range. If single value, specifies how many orders of 10 the flux factor can span in one direction
(i.e. log_10(guess_flux) - df < log_10(guess_flux) < log_10(guess_flux) + df

	covar_param_bounds – Params for covariance matrix. Like df, single value specifies how many orders of
magnitude parameter can span. Otherwise, should be a list of 2-elem touples

	read_noise_bounds – Param for read noise term. If single value, specifies how close to 0 it can go
based on powers of 10 (i.e. log_10(-read_noise_bound) < read_noise < 1)

Returns:

	
set_kernel(covar, covar_param_guesses, covar_param_labels, include_readnoise=False, read_noise_fraction=0.01)

	Set the Gaussian process kernel used in our astrometric fit

	Parameters:	
	covar – Covariance kernel for GP regression. If string, can be “matern32” or “sqexp”
Can also be a function: cov = cov_function(x_indices, y_indices, sigmas, cov_params)

	covar_param_guesses – a list of guesses on the hyperparmeteres (size of N_hyperparams)

	covar_param_labels – a list of strings labelling each covariance parameter

	include_readnoise – if True, part of the noise is a purely diagonal term (i.e. read/photon noise)

	read_noise_fraction – fraction of the total measured noise is read noise (between 0 and 1)

Returns:

	
pyklip.fitpsf.lnlike(fitparams, fma, cov_func)

	Likelihood function
:param fitparams: array of params (size N). First three are [dRA,dDec,f]. Additional parameters are GP hyperparams

dRA,dDec: RA,Dec offsets from star. Also coordianaes in self.data_{RA,Dec}_offset
f: flux scale factor to normalizae the flux of the data_stamp to the model

	Parameters:	
	fma (FMAstrometry) – a FMAstrometry object that has been fully set up to run

	cov_func (function) – function that given an input [x,y] coordinate array returns the covariance matrix
e.g. cov = cov_function(x_indices, y_indices, sigmas, cov_params)

	Returns:	log of likelihood function (minus a constant factor)

	Return type:	likeli

	
pyklip.fitpsf.lnprior(fitparams, bounds)

	Bayesian prior

	Parameters:	
	fitparams – array of params (size N)

	bounds – array of (N,2) with corresponding lower and upper bound of params
bounds[i,0] <= fitparams[i] < bounds[i,1]

	Returns:	0 if inside bound ranges, -inf if outside

	Return type:	prior

	
pyklip.fitpsf.lnprob(fitparams, fma, bounds, cov_func)

	Function to compute the relative posterior probabiltiy. Product of likelihood and prior
:param fitparams: array of params (size N). First three are [dRA,dDec,f]. Additional parameters are GP hyperparams

dRA,dDec: RA,Dec offsets from star. Also coordianaes in self.data_{RA,Dec}_offset
f: flux scale factor to normalizae the flux of the data_stamp to the model

	Parameters:	
	fma – a FMAstrometry object that has been fully set up to run

	bounds – array of (N,2) with corresponding lower and upper bound of params
bounds[i,0] <= fitparams[i] < bounds[i,1]

	cov_func – function that given an input [x,y] coordinate array returns the covariance matrix
e.g. cov = cov_function(x_indices, y_indices, sigmas, cov_params)

Returns:

pyklip.fm module

	
pyklip.fm.calculate_fm(delta_KL_nospec, original_KL, numbasis, sci, model_sci, inputflux=None)

	Calculate what the PSF looks up post-KLIP using knowledge of the input PSF, assumed spectrum of the science target,
and the partially calculated KL modes (Delta Z_k^lambda in Laurent’s paper). If inputflux is None,
the spectral dependence has already been folded into delta_KL_nospec (treat it as delta_KL).

Note: if inputflux is None and delta_KL_nospec has three dimensions (ie delta_KL_nospec was calculated using
pertrurb_nospec() or perturb_nospec_modelsBased()) then only klipped_oversub and klipped_selfsub are returned.
Besides they will have an extra first spectral dimension.

	Parameters:	
	delta_KL_nospec – perturbed KL modes but without the spectral info. delta_KL = spectrum x delta_Kl_nospec.
Shape is (numKL, wv, pix). If inputflux is None, delta_KL_nospec = delta_KL

	orignal_KL – unpertrubed KL modes (array of size [numbasis, numpix])

	numbasis – array of KL mode cutoffs
If numbasis is [None] the number of KL modes to be used is automatically picked based on the eigenvalues.

	sci – array of size p representing the science data

	model_sci – array of size p corresponding to the PSF of the science frame

	input_spectrum – array of size wv with the assumed spectrum of the model

If delta_KL_nospec does NOT include a spectral dimension or if inputflux is not None:
:returns:

	array of shape (b,p) showing the forward modelled PSF

	Skipped if inputflux = None, and delta_KL_nospec has 3 dimensions.

klipped_oversub: array of shape (b, p) showing the effect of oversubtraction as a function of KL modes
klipped_selfsub: array of shape (b, p) showing the effect of selfsubtraction as a function of KL modes
Note: psf_FM = model_sci - klipped_oversub - klipped_selfsub to get the FM psf as a function of K Lmodes

(shape of b,p)

	Return type:	fm_psf

If inputflux = None and if delta_KL_nospec include a spectral dimension:
:returns: Sum(<S|KL>KL) with klipped_oversub.shape = (size(numbasis),Npix)

klipped_selfsub: Sum(<N|DKL>KL) + Sum(<N|KL>DKL) with klipped_selfsub.shape = (size(numbasis),N_lambda or N_ref,N_pix)

	Return type:	klipped_oversub

	
pyklip.fm.calculate_fm_singleNumbasis(delta_KL_nospec, original_KL, numbasis, sci, model_sci, inputflux=None)

	Same function as calculate_fm() but faster when numbasis has only one element. It doesn’t do the mutliplication with
the triangular matrix.

Calculate what the PSF looks up post-KLIP using knowledge of the input PSF, assumed spectrum of the science target,
and the partially calculated KL modes (Delta Z_k^lambda in Laurent’s paper). If inputflux is None,
the spectral dependence has already been folded into delta_KL_nospec (treat it as delta_KL).

Note: if inputflux is None and delta_KL_nospec has three dimensions (ie delta_KL_nospec was calculated using
pertrurb_nospec() or perturb_nospec_modelsBased()) then only klipped_oversub and klipped_selfsub are returned.
Besides they will have an extra first spectral dimension.

	Parameters:	
	delta_KL_nospec – perturbed KL modes but without the spectral info. delta_KL = spectrum x delta_Kl_nospec.
Shape is (numKL, wv, pix). If inputflux is None, delta_KL_nospec = delta_KL

	orignal_KL – unpertrubed KL modes (array of size [numbasis, numpix])

	numbasis – array of (ONE ELEMENT ONLY) KL mode cutoffs
If numbasis is [None] the number of KL modes to be used is automatically picked based on the eigenvalues.

	sci – array of size p representing the science data

	model_sci – array of size p corresponding to the PSF of the science frame

	input_spectrum – array of size wv with the assumed spectrum of the model

If delta_KL_nospec does NOT include a spectral dimension or if inputflux is not None:
:returns:

	array of shape (b,p) showing the forward modelled PSF

	Skipped if inputflux = None, and delta_KL_nospec has 3 dimensions.

klipped_oversub: array of shape (b, p) showing the effect of oversubtraction as a function of KL modes
klipped_selfsub: array of shape (b, p) showing the effect of selfsubtraction as a function of KL modes
Note: psf_FM = model_sci - klipped_oversub - klipped_selfsub to get the FM psf as a function of K Lmodes

(shape of b,p)

	Return type:	fm_psf

If inputflux = None and if delta_KL_nospec include a spectral dimension:
:returns: Sum(<S|KL>KL) with klipped_oversub.shape = (size(numbasis),Npix)

klipped_selfsub: Sum(<N|DKL>KL) + Sum(<N|KL>DKL) with klipped_selfsub.shape = (size(numbasis),N_lambda or N_ref,N_pix)

	Return type:	klipped_oversub

	
pyklip.fm.calculate_validity(covar_perturb, models_ref, numbasis, evals_orig, covar_orig, evecs_orig, KL_orig, delta_KL)

	
	Calculate the validity of the perturbation based on the eigenvalues or the 2nd order term compared

	to the 0th order term of the covariance matrix expansion

	Parameters:	
	evals_perturb – linear expansion of the perturbed covariance matrix (C_AS). Shape of N x N

	models_ref – N x p array of the N models corresponding to reference images.
Each model should contain spectral information

	numbasis – array of KL mode cutoffs

	evevs_orig – size of [N, maxKL]

	Returns:	perturbed KL modes. Shape is (numKL, wv, pix)

	Return type:	delta_KL_nospec

	
pyklip.fm.find_id_nearest(array, value)

	Find index of the closest value in input array to input value
:param array: 1D array
:param value: scalar value
:return: Index of the nearest value in array

	
pyklip.fm.klip_dataset(dataset, fm_class, mode='ADI+SDI', outputdir='.', fileprefix='pyklipfm', annuli=5, subsections=4, OWA=None, N_pix_sector=None, movement=None, flux_overlap=0.1, PSF_FWHM=3.5, minrot=0, padding=3, numbasis=None, maxnumbasis=None, numthreads=None, calibrate_flux=False, aligned_center=None, spectrum=None, highpass=False, save_klipped=True, mute_progression=False)

	Run KLIP-FM on a dataset object

	Parameters:	
	dataset – an instance of Instrument.Data (see instruments/ subfolder)

	fm_class – class that implements the the forward modelling functionality

	mode – one of [‘ADI’, ‘SDI’, ‘ADI+SDI’] for ADI, SDI, or ADI+SDI

	anuuli – Annuli to use for KLIP. Can be a number, or a list of 2-element tuples (a, b) specifying
the pixel bondaries (a <= r < b) for each annulus

	subsections – Sections to break each annuli into. Can be a number [integer], or a list of 2-element tuples (a, b)
specifying the positon angle boundaries (a <= PA < b) for each section [radians]

	OWA – if defined, the outer working angle for pyklip. Otherwise, it will pick it as the cloest distance to a
nan in the first frame

	N_pix_sector – Rough number of pixels in a sector. Overwriting subsections and making it sepration dependent.
The number of subsections is defined such that the number of pixel is just higher than N_pix_sector.
I.e. subsections = floor(pi*(r_max^2-r_min^2)/N_pix_sector)
Warning: There is a bug if N_pix_sector is too big for the first annulus. The annulus is defined from

0 to 2pi which create a bug later on. It is probably in the way pa_start and pa_end are
defined in fm_from_eigen(). (I am taking about matched filter by the way)

	movement – minimum amount of movement (in pixels) of an astrophysical source
to consider using that image for a refernece PSF

	flux_overlap – Maximum fraction of flux overlap between a slice and any reference frames included in the
covariance matrix. Flux_overlap should be used instead of “movement” when a template spectrum is used.
However if movement is not None then the old code is used and flux_overlap is ignored.
The overlap is estimated for 1D gaussians with FWHM defined by PSF_FWHM. So note that the overlap is
not exactly the overlap of two real 2D PSF for a given instrument but it will behave similarly.

	PSF_FWHM – FWHM of the PSF used to calculate the overlap (cf flux_overlap). Default is FWHM = 3.5 corresponding
to sigma ~ 1.5.

	minrot – minimum PA rotation (in degrees) to be considered for use as a reference PSF (good for disks)

	padding – for each sector, how many extra pixels of padding should we have around the sides.

	numbasis – number of KL basis vectors to use (can be a scalar or list like). Length of b
If numbasis is [None] the number of KL modes to be used is automatically picked based on the eigenvalues.

	maxnumbasis – Number of KL modes to be calculated from whcih numbasis modes will be taken.

	numthreads – number of threads to use. If none, defaults to using all the cores of the cpu

	calibrate_flux – if true, flux calibrates the regular KLIP subtracted data. DOES NOT CALIBRATE THE FM

	aligned_center – array of 2 elements [x,y] that all the KLIP subtracted images will be centered on for image
registration

	spectrum – if not None, a array of length N with the flux of the template spectrum at each wavelength. Uses
minmove to determine the separation from the center of the segment to determine contamination and
the size of the PSF (TODO: make PSF size another quanitity)
(e.g. minmove=3, checks how much containmination is within 3 pixels of the hypothetical source)
if smaller than 10%, (hard coded quantity), then use it for reference PSF

	highpass – if True, run a Gaussian high pass filter (default size is sigma=imgsize/10)
can also be a number specifying FWHM of box in pixel units

	save_klipped – if True, will save the regular klipped image. If false, it wil not and sub_imgs will return None

	mute_progression – Mute the printing of the progression percentage. Indeed sometimes the overwriting feature
doesn’t work and one ends up with thousands of printed lines. Therefore muting it can be a good
idea.

	
pyklip.fm.klip_math(sci, refs, numbasis, covar_psfs=None, model_sci=None, models_ref=None, spec_included=False, spec_from_model=False)

	linear algebra of KLIP with linear perturbation
disks and point source

	Parameters:	
	sci – array of length p containing the science data

	refs – N x p array of the N reference images that
characterizes the extended source with p pixels

	numbasis – number of KLIP basis vectors to use (can be an int or an array of ints of length b)
If numbasis is [None] the number of KL modes to be used is automatically picked based on the eigenvalues.

	covar_psfs – covariance matrix of reference images (for large N, useful). Normalized following numpy normalization in np.cov documentation

	The following arguments must all be passed in, or none of them for klip_math to work (#) –

	models_ref – N x p array of the N models corresponding to reference images. Each model should be normalized to unity (no flux information)

	model_sci – array of size p corresponding to the PSF of the science frame

	Sel_wv – wv x N array of the the corresponding wavelength for each reference PSF

	input_spectrum – array of size wv with the assumed spectrum of the model

	Returns:	
	array of shape (p,b) that is the PSF subtracted data for each of the b KLIP basis

	cutoffs. If numbasis was an int, then sub_img_row_selected is just an array of length p

KL_basis: array of KL basis (shape of [numbasis, p])
If models_ref is passed in (not None):

delta_KL_nospec: array of shape (b, wv, p) that is the almost perturbed KL modes just missing spectral info

	Otherwise:

	evals: array of eigenvalues (size of max number of KL basis requested aka nummaxKL)
evecs: array of corresponding eigenvectors (shape of [p, nummaxKL])

	Return type:	sub_img_rows_selected

	
pyklip.fm.klip_parallelized(imgs, centers, parangs, wvs, IWA, fm_class, OWA=None, mode='ADI+SDI', annuli=5, subsections=4, movement=None, flux_overlap=0.1, PSF_FWHM=3.5, numbasis=None, maxnumbasis=None, aligned_center=None, numthreads=None, minrot=0, maxrot=360, spectrum=None, padding=3, save_klipped=True, flipx=True, N_pix_sector=None, mute_progression=False)

	multithreaded KLIP PSF Subtraction

	Parameters:	
	imgs – array of 2D images for ADI. Shape of array (N,y,x)

	centers – N by 2 array of (x,y) coordinates of image centers

	parangs – N length array detailing parallactic angle of each image

	wvs – N length array of the wavelengths

	IWA – inner working angle (in pixels)

	fm_class – class that implements the the forward modelling functionality

	OWA – if defined, the outer working angle for pyklip. Otherwise, it will pick it as the cloest distance to a
nan in the first frame

	mode – one of [‘ADI’, ‘SDI’, ‘ADI+SDI’] for ADI, SDI, or ADI+SDI

	anuuli – Annuli to use for KLIP. Can be a number, or a list of 2-element tuples (a, b) specifying
the pixel bondaries (a <= r < b) for each annulus

	subsections – Sections to break each annuli into. Can be a number [integer], or a list of 2-element tuples (a, b)
specifying the positon angle boundaries (a <= PA < b) for each section [radians]

	N_pix_sector – Rough number of pixels in a sector. Overwriting subsections and making it sepration dependent.
The number of subsections is defined such that the number of pixel is just higher than N_pix_sector.
I.e. subsections = floor(pi*(r_max^2-r_min^2)/N_pix_sector)
Warning: There is a bug if N_pix_sector is too big for the first annulus. The annulus is defined from

0 to 2pi which create a bug later on. It is probably in the way pa_start and pa_end are
defined in fm_from_eigen(). (I am taking about matched filter by the way)

	movement – minimum amount of movement (in pixels) of an astrophysical source
to consider using that image for a refernece PSF

	flux_overlap – Maximum fraction of flux overlap between a slice and any reference frames included in the
covariance matrix. Flux_overlap should be used instead of “movement” when a template spectrum is used.
However if movement is not None then the old code is used and flux_overlap is ignored.
The overlap is estimated for 1D gaussians with FWHM defined by PSF_FWHM. So note that the overlap is
not exactly the overlap of two real 2D PSF for a given instrument but it will behave similarly.

	PSF_FWHM – FWHM of the PSF used to calculate the overlap (cf flux_overlap). Default is FWHM = 3.5 corresponding
to sigma ~ 1.5.

	numbasis – number of KL basis vectors to use (can be a scalar or list like). Length of b
If numbasis is [None] the number of KL modes to be used is automatically picked based on the eigenvalues.

	maxnumbasis – Number of KL modes to be calculated from whcih numbasis modes will be taken.

	aligned_center – array of 2 elements [x,y] that all the KLIP subtracted images will be centered on for image
registration

	numthreads – number of threads to use. If none, defaults to using all the cores of the cpu

	minrot – minimum PA rotation (in degrees) to be considered for use as a reference PSF (good for disks)

	maxrot – maximum PA rotation (in degrees) to be considered for use as a reference PSF (temporal variability)

	spectrum – if not None, a array of length N with the flux of the template spectrum at each wavelength. Uses
minmove to determine the separation from the center of the segment to determine contamination and
the size of the PSF (TODO: make PSF size another quanitity)
(e.g. minmove=3, checks how much containmination is within 3 pixels of the hypothetical source)
if smaller than 10%, (hard coded quantity), then use it for reference PSF

	padding – for each sector, how many extra pixels of padding should we have around the sides.

	save_klipped – if True, will save the regular klipped image. If false, it wil not and sub_imgs will return None

	flipx – if True, flips x axis after rotation to get North up East left

	mute_progression – Mute the printing of the progression percentage. Indeed sometimes the overwriting feature
doesn’t work and one ends up with thousands of printed lines. Therefore muting it can be a good
idea.

	Returns:	
	array of [array of 2D images (PSF subtracted)] using different number of KL basis vectors as

	
specified by numbasis. Shape of (b,N,y,x).

Note: this will be None if save_klipped is False

fmout_np: output of forward modelling.
perturbmag: output indicating the magnitude of the linear perturbation to assess validity of KLIP FM

	Return type:	sub_imgs

	
pyklip.fm.pertrurb_nospec(evals, evecs, original_KL, refs, models_ref)

	Perturb the KL modes using a model of the PSF but with no assumption on the spectrum. Useful for planets.

By no assumption on the spectrum it means that the spectrum has been factored out of Delta_KL following equation (4)
of Laurent Pueyo 2016 noted bold “Delta Z_k^lambda (x)”. In order to get the actual perturbed KL modes one needs to
multpily it by a spectrum.

This function fits each cube’s spectrum independently. So the effective spectrum size is N_wavelengths * N_cubes.

	Parameters:	
	evals – array of eigenvalues of the reference PSF covariance matrix (array of size numbasis)

	evecs – corresponding eigenvectors (array of size [p, numbasis])

	orignal_KL – unpertrubed KL modes (array of size [numbasis, p])

	Sel_wv – wv x N array of the the corresponding wavelength for each reference PSF

	refs – N x p array of the N reference images that
characterizes the extended source with p pixels

	models_ref – N x p array of the N models corresponding to reference images. Each model should be normalized to unity (no flux information)

	model_sci – array of size p corresponding to the PSF of the science frame

	Returns:	
	perturbed KL modes but without the spectral info. delta_KL = spectrum x delta_Kl_nospec.

	Shape is (numKL, wv, pix)

	Return type:	delta_KL_nospec

	
pyklip.fm.perturb_nospec_modelsBased(evals, evecs, original_KL, refs, models_ref_list)

	Perturb the KL modes using a model of the PSF but with no assumption on the spectrum. Useful for planets.

By no assumption on the spectrum it means that the spectrum has been factored out of Delta_KL following equation (4)
of Laurent Pueyo 2016 noted bold “Delta Z_k^lambda (x)”. In order to get the actual perturbed KL modes one needs to
multpily it by a spectrum.

Effectively does the same thing as pertrurb_nospec() but in a different way. It injects models with dirac spectrum
(all but one vanishing wavelength) and because of the linearity of the problem allow one de get reconstruct the
perturbed KL mode for any spectrum.
The difference however in the pertrurb_nospec() case is that the spectrum here is the asummed to be the same for all

cubes while pertrurb_nospec() fit each cube independently.

	Parameters:	
	evals –

	evecs –

	original_KL –

	refs –

	models_ref –

	Returns:	

	
pyklip.fm.perturb_specIncluded(evals, evecs, original_KL, refs, models_ref, return_perturb_covar=False)

	Perturb the KL modes using a model of the PSF but with the spectrum included in the model. Quicker than the others

	Parameters:	
	evals – array of eigenvalues of the reference PSF covariance matrix (array of size numbasis)

	evecs – corresponding eigenvectors (array of size [p, numbasis])

	orignal_KL – unpertrubed KL modes (array of size [numbasis, p])

	refs – N x p array of the N reference images that
characterizes the extended source with p pixels

	models_ref – N x p array of the N models corresponding to reference images.
Each model should contain spectral informatoin

	model_sci – array of size p corresponding to the PSF of the science frame

	Returns:	perturbed KL modes. Shape is (numKL, wv, pix)

	Return type:	delta_KL_nospec

pyklip.klip module

	
pyklip.klip.align_and_scale(img, new_center, old_center=None, scale_factor=1, dtype=<type 'float'>)

	Helper function that realigns and/or scales the image

	Parameters:	
	img – 2D image to perform manipulation on

	new_center – 2 element tuple (xpos, ypos) of new image center

	old_center – 2 element tuple (xpos, ypos) of old image center

	scale_factor – how much the stretch/contract the image. Will we
scaled w.r.t the new_center (done after relaignment).
We will adopt the convention

>1: stretch image (shorter to longer wavelengths)
<1: contract the image (longer to shorter wvs)
This means scale factor should be lambda_0/lambda
where lambda_0 is the wavelength you want to scale to

	Returns:	shifted and/or scaled 2D image

	Return type:	resampled_img

	
pyklip.klip.align_and_scale_JB(img, new_center, old_center=None, scale_factor=1, dtype=<type 'float'>)

	Helper function that realigns and/or scales the image

>>JB’s version<<

I think the Nan management is better but there is still a bug to be fixed. (grid pattern in the nan background)

	Parameters:	
	img – 2D image to perform manipulation on

	new_center – 2 element tuple (xpos, ypos) of new image center

	old_center – 2 element tuple (xpos, ypos) of old image center

	scale_factor – how much the stretch/contract the image. Will we
scaled w.r.t the new_center (done after relaignment).
We will adopt the convention

>1: stretch image (shorter to longer wavelengths)
<1: contract the image (longer to shorter wvs)
This means scale factor should be lambda_0/lambda
where lambda_0 is the wavelength you want to scale to

	Returns:	shifted and/or scaled 2D image

	Return type:	resampled_img

	
pyklip.klip.calc_scaling(sats, refwv=18)

	Helper function that calculates the wavelength scaling factor from the satellite spot locations.
Uses the movement of spots diagonally across from each other, to calculate the scaling in a
(hopefully? tbd.) centering-independent way.
This method is definitely temporary and will be replaced by better scaling strategies as we come
up with them.
Scaling is calculated as the average of (1/2 * sqrt((x_1-x_2)**2+(y_1-y_2))), over the two pairs
of spots.

	Parameters:	
	sats – [4 x Nlambda x 2] array of x and y positions for the 4 satellite spots

	refwv – reference wavelength for scaling (optional, default = 20)

	Returns:	Nlambda array of scaling factors

	Return type:	scaling_factors

	
pyklip.klip.define_annuli_bounds(annuli, IWA, OWA, annuli_spacing='constant')

	Defines the annuli boundaries radially

	Parameters:	
	annuli – number of annuli

	IWA – inner working angle (pixels)

	OWA – outer working anglue (pixels)

	annuli_spacing – how to distribute the annuli radially. Currently three options. Constant (equally spaced),
log (logarithmical expansion with r), and linear (linearly expansion with r)

	Returns:	array of 2-element tuples that specify the beginning and end radius of that annulus

	Return type:	rad_bounds

	
pyklip.klip.estimate_movement(radius, parang0=None, parangs=None, wavelength0=None, wavelengths=None, mode=None)

	Estimates the movement of a hypothetical astrophysical source in ADI and/or SDI at the given radius and
given reference parallactic angle (parang0) and reference wavelegnth (wavelength0)

	Parameters:	
	radius – the radius from the star of the hypothetical astrophysical source

	parang0 – the parallactic angle of the reference image (in degrees)

	parangs – array of length N of the parallactic angle of all N images (in degrees)

	wavelength0 – the wavelength of the reference image

	wavelengths – array of length N of the wavelengths of all N images

	NOTE – we expect parang0 and parangs to be either both defined or both None.
Same with wavelength0 and wavelengths

	mode – one of [‘ADI’, ‘SDI’, ‘ADI+SDI’] for ADI, SDI, or ADI+SDI

	Returns:	
	array of length N of the distance an astrophysical source would have moved from the

	reference image

	Return type:	moves

	
pyklip.klip.high_pass_filter(img, filtersize=10)

	A FFT implmentation of high pass filter.

	Parameters:	
	img – a 2D image

	filtersize – size in Fourier space of the size of the space. In image space, size=img_size/filtersize

	Returns:	the filtered image

	Return type:	filtered

	
pyklip.klip.klip_math(sci, ref_psfs, numbasis, covar_psfs=None, return_basis=False, return_basis_and_eig=False)

	Helper function for KLIP that does the linear algebra

	Parameters:	
	sci – array of length p containing the science data

	ref_psfs – N x p array of the N reference PSFs that
characterizes the PSF of the p pixels

	numbasis – number of KLIP basis vectors to use (can be an int or an array of ints of length b)

	covar_psfs – covariance matrix of reference psfs passed in so you don’t have to calculate it here

	return_basis – If true, return KL basis vectors (used when onesegment==True)

	return_basis_and_eig – If true, return KL basis vectors as well as the eigenvalues and eigenvectors of the
covariance matrix. Used for KLIP Forward Modelling of Laurent Pueyo.

	Returns:	
	array of shape (p,b) that is the PSF subtracted data for each of the b KLIP basis

	cutoffs. If numbasis was an int, then sub_img_row_selected is just an array of length p

KL_basis: array of shape (max(numbasis),p). Only if return_basis or return_basis_and_eig is True.
evals: Eigenvalues of the covariance matrix. The covariance matrix is assumed NOT to be normalized by (p-1).

Only if return_basis_and_eig is True.

	evecs: Eigenvectors of the covariance matrix. The covariance matrix is assumed NOT to be normalized by (p-1).

	Only if return_basis_and_eig is True.

	Return type:	sub_img_rows_selected

	
pyklip.klip.meas_contrast(dat, iwa, owa, resolution, center=None, low_pass_filter=True)

	Measures the contrast in the image. Image must already be in contrast units and should be corrected for algorithm
thoughput.

	Parameters:	
	dat – 2D image - already flux calibrated

	iwa – inner working angle

	owa – outer working angle

	resolution – size of resolution element in pixels (FWHM or lambda/D)

	center – location of star (x,y). If None, defaults the image size // 2.

	low_pass_filter – if True, run a low pass filter.
Can also be a float which specifices the width of the Gaussian filter (sigma).
If False, no Gaussian filter is run

	Returns:	tuple of separations in pixels and corresponding 5 sigma FPF

	Return type:	(seps, contrast)

	
pyklip.klip.nan_gaussian_filter(img, sigma)

	Gaussian low-pass filter that handles nans

	Parameters:	
	img – 2-D image

	sigma – float specifiying width of Gaussian

	Returns:	2-D image that has been smoothed with a Gaussian

	Return type:	filtered

	
pyklip.klip.rotate(img, angle, center, new_center=None, flipx=True, astr_hdr=None)

	Rotate an image by the given angle about the given center.
Optional: can shift the image to a new image center after rotation. Also can reverse x axis for those left

handed astronomy coordinate systems

	Parameters:	
	img – a 2D image

	angle – angle CCW to rotate by (degrees)

	center – 2 element list [x,y] that defines the center to rotate the image to respect to

	new_center – 2 element list [x,y] that defines the new image center after rotation

	flipx – default is True, which reverses x axis.

	astr_hdr – wcs astrometry header for the image

	Returns:	new 2D image

	Return type:	resampled_img

pyklip.parallelized module

	
pyklip.parallelized.high_pass_filter_imgs(imgs, numthreads=None, filtersize=10)

	filters a sequences of images using a FFT

	Inputs:

	imgs: array of shape (N,y,x) containing N images
numthreads: number of threads to be used
filtersize: size in Fourier space of the size of the space. In image space, size=img_size/filtersize

	Output:

	filtered: array of shape (N,y,x) containing the filtered images

	
pyklip.parallelized.klip_dataset(dataset, mode='ADI+SDI', outputdir='.', fileprefix='', annuli=5, subsections=4, movement=3, numbasis=None, numthreads=None, minrot=0, calibrate_flux=False, aligned_center=None, annuli_spacing='constant', maxnumbasis=None, spectrum=None, psf_library=None, highpass=False, lite=False, save_aligned=False, restored_aligned=None, dtype=<type 'numpy.float32'>)

	run klip on a dataset class outputted by an implementation of Instrument.Data

	Parameters:	
	dataset – an instance of Instrument.Data (see instruments/ subfolder)

	mode – some combination of ADI, SDI, and RDI (e.g. “ADI+SDI”, “RDI”)

	outputdir – directory to save output files

	fileprefix – filename prefix for saved files

	anuuli – number of annuli to use for KLIP

	subsections – number of sections to break each annuli into

	movement – minimum amount of movement (in pixels) of an astrophysical source
to consider using that image for a refernece PSF

	numbasis – number of KL basis vectors to use (can be a scalar or list like). Length of b

	numthreads – number of threads to use. If none, defaults to using all the cores of the cpu

	minrot – minimum PA rotation (in degrees) to be considered for use as a reference PSF (good for disks)

	calibrate_flux – if True calibrate flux of the dataset, otherwise leave it be

	aligned_center – array of 2 elements [x,y] that all the KLIP subtracted images will be centered on for image
registration

	annuli_spacing – how to distribute the annuli radially. Currently three options. Constant (equally spaced),
log (logarithmical expansion with r), and linear (linearly expansion with r)

	maxnumbasis – if not None, maximum number of KL basis/correlated PSFs to use for KLIP. Otherwise, use max(numbasis)

	spectrum – (only applicable for SDI) if not None, optimizes the choice of the reference PSFs based on the
spectrum shape. Currently only supports “methane” between 1 and 10 microns.

	psf_library – if not None, a rdi.PSFLibrary object with a PSF Library for RDI

	highpass – if True, run a Gaussian high pass filter (default size is sigma=imgsize/10)
can also be a number specifying FWHM of box in pixel units

	lite – if True, run a low memory version of the alogirhtm

	Save the aligned and scaled images (save_aligned) –

	The aligned and scaled images from a previous run of klip_dataset (restore_aligned) – (usually restored_aligned = dataset.aligned_and_scaled)

	Returns

	Saved files in the output directory
Returns: nothing, but saves to dataset.output: (b, N, wv, y, x) 5D cube of KL cutoff modes (b), number of images

(N), wavelengths (wv), and spatial dimensions. Images are derotated.
For ADI only, the wv is omitted so only 4D cube

	
pyklip.parallelized.klip_parallelized(imgs, centers, parangs, wvs, IWA, OWA=None, mode='ADI+SDI', annuli=5, subsections=4, movement=3, numbasis=None, aligned_center=None, numthreads=None, minrot=0, maxrot=360, annuli_spacing='constant', maxnumbasis=None, spectrum=None, psf_library=None, psf_library_good=None, psf_library_corr=None, save_aligned=False, restored_aligned=None, dtype=<type 'float'>)

	multithreaded KLIP PSF Subtraction

	Parameters:	
	imgs – array of 2D images for ADI. Shape of array (N,y,x)

	centers – N by 2 array of (x,y) coordinates of image centers

	parangs – N length array detailing parallactic angle of each image

	wvs – N length array of the wavelengths

	IWA – inner working angle (in pixels)

	mode – one of [‘ADI’, ‘SDI’, ‘ADI+SDI’] for ADI, SDI, or ADI+SDI

	anuuli – number of annuli to use for KLIP

	subsections – number of sections to break each annuli into

	movement – minimum amount of movement (in pixels) of an astrophysical source
to consider using that image for a refernece PSF

	numbasis – number of KL basis vectors to use (can be a scalar or list like). Length of b

	aligned_center – array of 2 elements [x,y] that all the KLIP subtracted images will be centered on for image
registration

	numthreads – number of threads to use. If none, defaults to using all the cores of the cpu

	minrot – minimum PA rotation (in degrees) to be considered for use as a reference PSF (good for disks)

	maxrot – maximum PA rotation (in degrees) to be considered for use as a reference PSF (temporal variability)

	annuli_spacing – how to distribute the annuli radially. Currently three options. Constant (equally spaced),
log (logarithmical expansion with r), and linear (linearly expansion with r)

	maxnumbasis – if not None, maximum number of KL basis/correlated PSFs to use for KLIP. Otherwise, use max(numbasis)

	spectrum – if not None, a array of length N with the flux of the template spectrum at each wavelength. Uses
minmove to determine the separation from the center of the segment to determine contamination and
the size of the PSF (TODO: make PSF size another quanitity)
(e.g. minmove=3, checks how much containmination is within 3 pixels of the hypothetical source)
if smaller than 10%, (hard coded quantity), then use it for reference PSF

	psf_library – array of (N_lib, y, x) with N_lib PSF library PSFs

	psf_library_good – array of size N_lib indicating which N_good are good are selected in the passed in corr matrix

	psf_library_corr – matrix of size N_sci x N_good with correlation between the target franes and the good RDI PSFs

	save_aligned – Save the aligned and scaled images (as well as various wcs information), True/False

	restore_aligned – The aligned and scaled images from a previous run of klip_dataset
(usually restored_aligned = dataset.aligned_and_scaled)

	dtype – data type of the arrays. Should be either float (meaning double) or np.float32.

	Returns:	
	array of [array of 2D images (PSF subtracted)] using different number of KL basis vectors as

	specified by numbasis. Shape of (b,N,y,x).

	Return type:	sub_imgs

	
pyklip.parallelized.klip_parallelized_lite(imgs, centers, parangs, wvs, IWA, OWA=None, mode='ADI+SDI', annuli=5, subsections=4, movement=3, numbasis=None, aligned_center=None, numthreads=None, minrot=0, maxrot=360, annuli_spacing='constant', maxnumbasis=None, spectrum=None, dtype=<type 'float'>, **kwargs)

	multithreaded KLIP PSF Subtraction, has a smaller memory foot print than the original

	Parameters:	
	imgs – array of 2D images for ADI. Shape of array (N,y,x)

	centers – N by 2 array of (x,y) coordinates of image centers

	parangs – N length array detailing parallactic angle of each image

	wvs – N length array of the wavelengths

	IWA – inner working angle (in pixels)

	OWA – outer working angle (in pixels)

	mode – one of [‘ADI’, ‘SDI’, ‘ADI+SDI’] for ADI, SDI, or ADI+SDI

	anuuli – number of annuli to use for KLIP

	subsections – number of sections to break each annuli into

	movement – minimum amount of movement (in pixels) of an astrophysical source
to consider using that image for a refernece PSF

	numbasis – number of KL basis vectors to use (can be a scalar or list like). Length of b

	annuli_spacing – how to distribute the annuli radially. Currently three options. Constant (equally spaced),
log (logarithmical expansion with r), and linear (linearly expansion with r)

	maxnumbasis – if not None, maximum number of KL basis/correlated PSFs to use for KLIP. Otherwise, use max(numbasis)

	aligned_center – array of 2 elements [x,y] that all the KLIP subtracted images will be centered on for image
registration

	numthreads – number of threads to use. If none, defaults to using all the cores of the cpu

	minrot – minimum PA rotation (in degrees) to be considered for use as a reference PSF (good for disks)

	maxrot – maximum PA rotation (in degrees) to be considered for use as a reference PSF (temporal variability)

	spectrum – if not None, a array of length N with the flux of the template spectrum at each wavelength. Uses
minmove to determine the separation from the center of the segment to determine contamination and
the size of the PSF (TODO: make PSF size another quanitity)
(e.g. minmove=3, checks how much containmination is within 3 pixels of the hypothetical source)
if smaller than 10%, (hard coded quantity), then use it for reference PSF

	kwargs – in case you pass it stuff that we don’t use in the lite version

	dtype – data type of the arrays. Should be either float (meaning double) or np.float32.

	Returns:	
	array of [array of 2D images (PSF subtracted)] using different number of KL basis vectors as

	specified by numbasis. Shape of (b,N,y,x).

	Return type:	sub_imgs

	
pyklip.parallelized.rotate_imgs(imgs, angles, centers, new_center=None, numthreads=None, flipx=True, hdrs=None, disable_wcs_rotation=False)

	derotate a sequences of images by their respective angles

	Parameters:	
	imgs – array of shape (N,y,x) containing N images

	angles – array of length N with the angle to rotate each frame. Each angle should be CW in degrees.
(TODO: fix this angle convention)

	centers – array of shape N,2 with the [x,y] center of each frame

	new_centers – a 2-element array with the new center to register each frame. Default is middle of image

	numthreads – number of threads to be used

	flipx – flip the x axis to get a left handed coordinate system (oh astronomers...)

	hdrs – array of N wcs astrometry headers

	Returns:	array of shape (N,y,x) containing the derotated images

	Return type:	derotated

pyklip.rdi module

	
class pyklip.rdi.PSFLibrary(data, aligned_center, filenames, correlation_matrix=None, wvs=None, compute_correlation=False)

	Bases: object

This is an PSF Library to use for reference differential imaging

	
master_library

	np.ndarray – aligned library of PSFs. 3-D cube of dim = [N, y, x]. Where N is ALL files

	
aligned_center

	array-like – a (x,y) coordinate specifying common center the library is aligned to

	
master_filenames

	np.ndarray – array of N filenames for each frame in the library. Should match with
pyklip.instruments.Data.filenames for cross-matching

	
master_correlation

	np.ndarray – N x N array of correlations between each 2 frames

	
master_wvs

	np.ndarray – N wavelengths for each frame

	
nfiles

	int – the number of files in the PSF library

	
dataset

	pyklip.instruments.Instrument.Data

	
correlation

	np.ndarray – N_data x M array of correlations between each 2 frames where M are the selected frames
and N_data is the number of files in the dataset. Along the N_data dimension, files are
ordered in the same way as the dataset object

	
isgoodpsf

	np.ndarray – array of N indicating which M PSFs are good for this dataset

	
prepare_library(dataset, badfiles=None)

	Prepare the PSF Library for an RDI reduction of a specific dataset by only taking the part of the
library we need.

	Parameters:	
	dataset (pyklip.instruments.Instrument.Data) –

	badfiles (np.ndarray) – a list of filenames corresponding to bad files we want to also exclude

Returns:

	
save_correlation(filename, clobber=False, format='fits')

	Saves self.correlation to a file specified by filename
:param filename: filepath to store the correlation matrix
:type filename: str
:param format: type of file to store the correlation matrix as. Supports numpy?/fits?/pickle? (TBD)
:type format: str

pyklip.spectra_management module

	
pyklip.spectra_management.LSQ_place_model_PSF(PSF_template, x_cen, y_cen, planet_image, x_grid=None, y_grid=None)

	

	
pyklip.spectra_management.LSQ_scale_model_PSF(PSF_template, planet_image, a)

	

	
pyklip.spectra_management.extract_planet_centroid(cube, position, PSF_cube)

	

	
pyklip.spectra_management.extract_planet_spectrum(cube_para, position, PSF_cube_para, method=None, filter=None, mute=True)

	

	
pyklip.spectra_management.find_lower_nearest(array, value)

	Find the lower nearest element to value in array.

	Parameters:	
	array – Array of value

	value – Value for which one wants the lower value.

	Returns:	(low_value, id) with low_value the closest lower value and id its index.

	
pyklip.spectra_management.find_nearest(array, value)

	Find the nearest element to value in array.

	Parameters:	
	array – Array of value

	value – Value for which one wants the closest value.

	Returns:	(closest_value, id) with closest_value the closest lower value and id its index.

	
pyklip.spectra_management.find_upper_nearest(array, value)

	Find the upper nearest element to value in array.

	Parameters:	
	array – Array of value

	value – Value for which one wants the upper value.

	Returns:	(up_value, id) with up_value the closest upper value and id its index.

	
pyklip.spectra_management.get_gpi_filter(filter_name)

	Extract the spectrum of a given gpi filter with the sampling of pipeline reduced cubes.

	Inputs:

	filter_name: ‘H’, ‘J’, ‘K1’, ‘K2’, ‘Y’

	Output:

	
	(wavelengths, spectrum) where

	wavelengths: is the gpi sampling of the considered band in mum.
spectrum: is the transmission spectrum of the filter for the given band.

	
pyklip.spectra_management.get_gpi_wavelength_sampling(filter_name)

	Return GPI wavelength sampling for a given band.

	Parameters:	filter_name – ‘H’, ‘J’, ‘K1’, ‘K2’, ‘Y’.
Wavelength samples are linearly spaced between the first and the last wavelength of the band.

	Returns:	is the gpi sampling of the considered band in micrometer.

	Return type:	wavelengths

	
pyklip.spectra_management.get_planet_spectrum(filename, wavelength)

	Get the normalized spectrum of a planet for a GPI spectral band or any wavelengths array.
Spectra are extraced from .flx files from Mark Marley et al’s models.

	Parameters:	
	filename – Path of the .flx file containing the spectrum.

	wavelength – ‘H’, ‘J’, ‘K1’, ‘K2’, ‘Y’ or array of wavelenths in microns. When using GPI spectral band,
wavelength samples are linearly spaced between the first and the last wavelength of the band.

	Returns:	is the gpi sampling of the considered band in micrometer.
spectrum: is the spectrum of the planet for the given band or wavelength array and normalized to unit mean.

	Return type:	wavelengths

	
pyklip.spectra_management.get_specType(object_name, SpT_file_csv=None)

	Return the spectral type for a target based on the table in SpT_file

	Parameters:	
	object_name – Name of the target: ie “c_Eri”

	SpT_file – Filename (.csv) of the table containing the target names and their spectral type.
Can be generated from bu quering Simbad.
If None (default), the function directly tries to query Simbad.

	Returns:	Spectral type

	
pyklip.spectra_management.get_star_spectrum(wvs_or_filter_name, star_type=None, temperature=None, mute=None)

	Get the spectrum of a star with given spectral type interpolating in the pickles database.
The spectrum is normalized to unit mean.
Work only for type V star.

	Inputs:

	wvs_or_filter_name: list of wavelengths or GPI filter ‘H’, ‘J’, ‘K1’, ‘K2’, ‘Y’.
star_type: ‘A5’,’F4’,... Is ignored if temperature is defined.

If star_type is longer than 2 characters it is truncated.

temperature: temperature of the star. Overwrite star_type if defined.

	Output:

	
	(wavelengths, spectrum) where

	wavelengths: Sampling in mum.
spectrum: is the spectrum of the star for the given band.

	
pyklip.spectra_management.place_model_PSF(PSF_template, x_cen, y_cen, output_shape, x_grid=None, y_grid=None)

	

Module contents

pyklip.fmlib package

Submodules

pyklip.fmlib.diskfm module

	
class pyklip.fmlib.diskfm.DiskFM(inputs_shape, numbasis, dataset, model_disk, basis_filename='klip-basis.p', load_from_basis=False, save_basis=False, annuli=None, subsections=None, OWA=None, numthreads=None, mode='ADI')

	Bases: pyklip.fmlib.nofm.NoFM

	
alloc_fmout(output_img_shape)

	Allocates shared memory for output image

	
cleanup_fmout(fmout)

	After running KLIP-FM, we need to reshape fmout so that the numKL dimension is the first one and not the last

	Parameters:	fmout – numpy array of ouput of FM

	Returns:	same but cleaned up if necessary

	Return type:	fmout

	
fm_from_eigen(klmodes=None, evals=None, evecs=None, input_img_shape=None, input_img_num=None, ref_psfs_indicies=None, section_ind=None, section_ind_nopadding=None, aligned_imgs=None, pas=None, wvs=None, radstart=None, radend=None, phistart=None, phiend=None, padding=None, IOWA=None, ref_center=None, parang=None, ref_wv=None, numbasis=None, fmout=None, perturbmag=None, klipped=None, covar_files=None, **kwargs)

	FIXME

	
fm_parallelized()

	Functions like klip_parallelized, but doesn’t find new
evals and evecs.

	
load_basis_files(basis_file_pattern)

	Loads in previously saved basis files and sets variables for fm_from_eigen

	
save_fmout(dataset, fmout, outputdir, fileprefix, numbasis, klipparams=None, calibrate_flux=False, spectrum=None)

	Uses self.dataset parameters to save fmout, the output of
fm_paralellized or klip_dataset

	
update_disk(model_disk)

	Takes model disk and rotates it to the PAs of the input images for use as reference PSFS

	Parameters:	
	model_disk – Disk to be forward modeled, can be either a 2D array ([N,N], where N is the width and height of your image)

	which case, if the dataset is multiwavelength then the same model is used for all wavelenths. Otherwise, the model_disk is (in) –

	as a 3D arary, [nwvs, N,N], where nwvs is the number of wavelength channels) (input) –

	Returns:	None

pyklip.fmlib.extractSpec module

	
class pyklip.fmlib.extractSpec.ExtractSpec(inputs_shape, numbasis, sep, pa, input_psfs, input_psfs_wvs, datatype='float', stamp_size=None)

	Bases: pyklip.fmlib.nofm.NoFM

Planet Characterization class. Goal to characterize the astrometry and photometry of a planet

	
alloc_fmout(output_img_shape)

	Allocates shared memory for the output of the shared memory

	Parameters:	output_img_shape – shape of output image (usually N,y,x,b)

	Returns:	mp.array to store FM data in
fmout_shape: shape of FM data array

	Return type:	fmout

	
cleanup_fmout(fmout)

	After running KLIP-FM, we need to reshape fmout so that the numKL dimension is the first one and not the last

	Parameters:	fmout – numpy array of ouput of FM

	Returns:	same but cleaned up if necessary

	Return type:	fmout

	
fm_from_eigen(klmodes=None, evals=None, evecs=None, input_img_shape=None, input_img_num=None, ref_psfs_indicies=None, section_ind=None, section_ind_nopadding=None, aligned_imgs=None, pas=None, wvs=None, radstart=None, radend=None, phistart=None, phiend=None, padding=None, IOWA=None, ref_center=None, parang=None, ref_wv=None, numbasis=None, fmout=None, perturbmag=None, klipped=None, **kwargs)

	Generate forward models using the KL modes, eigenvectors, and eigenvectors from KLIP. Calls fm.py functions to
perform the forward modelling

	Parameters:	
	klmodes – unpertrubed KL modes

	evals – eigenvalues of the covariance matrix that generated the KL modes in ascending order
(lambda_0 is the 0 index) (shape of [nummaxKL])

	evecs – corresponding eigenvectors (shape of [p, nummaxKL])

	input_image_shape – 2-D shape of inpt images ([ysize, xsize])

	input_img_num – index of sciece frame

	ref_psfs_indicies – array of indicies for each reference PSF

	section_ind – array indicies into the 2-D x-y image that correspond to this section.
Note needs be called as section_ind[0]

	pas – array of N parallactic angles corresponding to N reference images [degrees]

	wvs – array of N wavelengths of those referebce images

	radstart – radius of start of segment

	radend – radius of end of segment

	phistart – azimuthal start of segment [radians]

	phiend – azimuthal end of segment [radians]

	padding – amount of padding on each side of sector

	IOWA – tuple (IWA,OWA) where IWA = Inner working angle and OWA = Outer working angle both in pixels.
It defines the separation interva in which klip will be run.

	ref_center – center of image

	numbasis – array of KL basis cutoffs

	parang – parallactic angle of input image [DEGREES]

	ref_wv – wavelength of science image

	fmout – numpy output array for FM output. Shape is (N, y, x, b)

	perturbmag – numpy output for size of linear perturbation. Shape is (N, b)

	klipped – PSF subtracted image. Shape of (size(section), b)

	kwargs – any other variables that we don’t use but are part of the input

	
generate_models(input_img_shape, section_ind, pas, wvs, radstart, radend, phistart, phiend, padding, ref_center, parang, ref_wv, stamp_size=None)

	Generate model PSFs at the correct location of this segment for each image denoated by its wv and parallactic angle

	Parameters:	
	pas – array of N parallactic angles corresponding to N images [degrees]

	wvs – array of N wavelengths of those images

	radstart – radius of start of segment

	radend – radius of end of segment

	phistart – azimuthal start of segment [radians]

	phiend – azimuthal end of segment [radians]

	padding – amount of padding on each side of sector

	ref_center – center of image

	parang – parallactic angle of input image [DEGREES]

	ref_wv – wavelength of science image

	stamp_size – size of the stamp for spectral extraction

	Returns:	array of size (N, p) where p is the number of pixels in the segment

	Return type:	models

	
pyklip.fmlib.extractSpec.calculate_annuli_bounds(num_annuli, annuli_index, iwa, firstframe, firstframe_centers)

	Calculate annulus boundaries of a particular annuli. Useful for figuring out annuli boundaries when just giving an
integer as the parameter to pyKLIP

	Parameters:	
	num_annuli – integer for number of annuli requested

	annuli_index – integer for which annuli (innermost annulus is 0)

	iwa – inner working angle

	firstframe – data of first frame of the sequence. dataset.inputs[0]

	firstframe_centers – [x,y] center for the first frame. i.e. dataset.centers[0]

	Returns:	
	radial separation of annuli. [annuli_start, annuli_end]

	This is a single 2 element list [annuli_start, annuli_end]

	Return type:	rad_bounds[annuli_index]

pyklip.fmlib.fmpsf module

	
class pyklip.fmlib.fmpsf.FMPlanetPSF(inputs_shape, numbasis, sep, pa, dflux, input_psfs, input_wvs, flux_conversion=None, spectrallib=None, spectrallib_units='flux', star_spt=None, refine_fit=False)

	Bases: pyklip.fmlib.nofm.NoFM

Forward models the PSF of the planet through KLIP. Returns the forward modelled planet PSF

	
alloc_fmout(output_img_shape)

	Allocates shared memory for the output of the shared memory

	Parameters:	output_img_shape – shape of output image (usually N,y,x,b)

	Returns:	mp.array to store FM data in
fmout_shape: shape of FM data array

	Return type:	fmout

	
alloc_perturbmag(output_img_shape, numbasis)

	Allocates shared memory to store the fractional magnitude of the linear KLIP perturbation
Stores a number for each frame = max(oversub + selfsub)/std(PCA(image))

	Parameters:	
	output_img_shape – shape of output image (usually N,y,x,b)

	numbasis – array/list of number of KL basis cutoffs requested

	Returns:	mp.array to store linaer perturbation magnitude
perturbmag_shape: shape of linear perturbation magnitude

	Return type:	perturbmag

	
cleanup_fmout(fmout)

	After running KLIP-FM, we need to reshape fmout so that the numKL dimension is the first one and not the last

	Parameters:	fmout – numpy array of ouput of FM

	Returns:	same but cleaned up if necessary

	Return type:	fmout

	
fm_from_eigen(klmodes=None, evals=None, evecs=None, input_img_shape=None, input_img_num=None, ref_psfs_indicies=None, section_ind=None, section_ind_nopadding=None, aligned_imgs=None, pas=None, wvs=None, radstart=None, radend=None, phistart=None, phiend=None, padding=None, IOWA=None, ref_center=None, parang=None, ref_wv=None, numbasis=None, fmout=None, perturbmag=None, klipped=None, covar_files=None, flipx=True, **kwargs)

	Generate forward models using the KL modes, eigenvectors, and eigenvectors from KLIP. Calls fm.py functions to
perform the forward modelling

	Parameters:	
	klmodes – unpertrubed KL modes

	evals – eigenvalues of the covariance matrix that generated the KL modes in ascending order
(lambda_0 is the 0 index) (shape of [nummaxKL])

	evecs – corresponding eigenvectors (shape of [p, nummaxKL])

	input_image_shape – 2-D shape of inpt images ([ysize, xsize])

	input_img_num – index of sciece frame

	ref_psfs_indicies – array of indicies for each reference PSF

	section_ind – array indicies into the 2-D x-y image that correspond to this section.
Note needs be called as section_ind[0]

	pas – array of N parallactic angles corresponding to N reference images [degrees]

	wvs – array of N wavelengths of those referebce images

	radstart – radius of start of segment

	radend – radius of end of segment

	phistart – azimuthal start of segment [radians]

	phiend – azimuthal end of segment [radians]

	padding – amount of padding on each side of sector

	IOWA – tuple (IWA,OWA) where IWA = Inner working angle and OWA = Outer working angle both in pixels.
It defines the separation interva in which klip will be run.

	ref_center – center of image

	numbasis – array of KL basis cutoffs

	parang – parallactic angle of input image [DEGREES]

	ref_wv – wavelength of science image

	fmout – numpy output array for FM output. Shape is (N, y, x, b)

	perturbmag – numpy output for size of linear perturbation. Shape is (N, b)

	klipped – PSF subtracted image. Shape of (size(section), b)

	kwargs – any other variables that we don’t use but are part of the input

	
generate_models(input_img_shape, section_ind, pas, wvs, radstart, radend, phistart, phiend, padding, ref_center, parang, ref_wv, flipx)

	Generate model PSFs at the correct location of this segment for each image denoated by its wv and parallactic angle

	Parameters:	
	pas – array of N parallactic angles corresponding to N images [degrees]

	wvs – array of N wavelengths of those images

	radstart – radius of start of segment

	radend – radius of end of segment

	phistart – azimuthal start of segment [radians]

	phiend – azimuthal end of segment [radians]

	padding – amount of padding on each side of sector

	ref_center – center of image

	parang – parallactic angle of input image [DEGREES]

	ref_wv – wavelength of science image

	flipx – if True, flip x coordinate in final image

	Returns:	array of size (N, p) where p is the number of pixels in the segment

	Return type:	models

	
save_fmout(dataset, fmout, outputdir, fileprefix, numbasis, klipparams=None, calibrate_flux=False, spectrum=None)

	Saves the FM planet PSFs to disk. Saves both a KL mode cube and spectral cubes

	Parameters:	
	dataset – Instruments.Data instance. Will use its dataset.savedata() function to save data

	fmout – the fmout data passed from fm.klip_parallelized which is passed as the output of cleanup_fmout

	outputdir – output directory

	fileprefix – the fileprefix to prepend the file name

	numbasis – KL mode cutoffs used

	klipparams – string with KLIP-FM parameters

	calibrate_flux – if True, flux calibrate the data in the same way as the klipped data

	spectrum – if not None, spectrum to weight the data by. Length same as dataset.wvs

	
pyklip.fmlib.fmpsf.calculate_annuli_bounds(num_annuli, annuli_index, iwa, firstframe, firstframe_centers)

	Calculate annulus boundaries of a particular annuli. Useful for figuring out annuli boundaries when just giving an
integer as the parameter to pyKLIP

	Parameters:	
	num_annuli – integer for number of annuli requested

	annuli_index – integer for which annuli (innermost annulus is 0)

	iwa – inner working angle

	firstframe – data of first frame of the sequence. dataset.inputs[0]

	firstframe_centers – [x,y] center for the first frame. i.e. dataset.centers[0]

	Returns:	
	radial separation of annuli. [annuli_start, annuli_end]

	This is a single 2 element list [annuli_start, annuli_end]

	Return type:	rad_bounds[annuli_index]

pyklip.fmlib.matchedFilter module

	
class pyklip.fmlib.matchedFilter.MatchedFilter(inputs_shape, numbasis, input_psfs, input_psfs_wvs, spot_flux, spectrallib=None, mute=False, star_type=None, filter_name=None, save_per_sector=None, datatype='float', fakes_sepPa_list=None, disable_FM=None, true_fakes_pos=None)

	Bases: pyklip.fmlib.nofm.NoFM

Matched filter with forward modelling.

	
alloc_fmout(output_img_shape)

	Allocates shared memory for the output of the shared memory

	Parameters:	output_img_shape – shape of output image (usually N,y,x,b)

	Returns:	mp.array to store auxilliary data in
fmout_shape: shape of auxilliary array

	Return type:	fmout

	
fm_end_sector(interm_data=None, fmout=None, sector_index=None, section_indicies=None)

	Does some forward modelling at the end of a sector after all images have been klipped for that sector.

	
fm_from_eigen(klmodes=None, evals=None, evecs=None, input_img_shape=None, input_img_num=None, ref_psfs_indicies=None, section_ind=None, section_ind_nopadding=None, aligned_imgs=None, pas=None, wvs=None, radstart=None, radend=None, phistart=None, phiend=None, padding=None, IOWA=None, ref_center=None, parang=None, ref_wv=None, numbasis=None, fmout=None, perturbmag=None, klipped=None, **kwargs)

	

	Parameters:	
	klmodes – unpertrubed KL modes

	evals – eigenvalues of the covariance matrix that generated the KL modes in ascending order
(lambda_0 is the 0 index) (shape of [nummaxKL])

	evecs – corresponding eigenvectors (shape of [p, nummaxKL])

	input_image_shape – 2-D shape of inpt images ([ysize, xsize])

	input_img_num – index of sciece frame

	ref_psfs_indicies – array of indicies for each reference PSF

	section_ind – array indicies into the 2-D x-y image that correspond to this section.
Note needs be called as section_ind[0]

	pas – array of N parallactic angles corresponding to N reference images [degrees]

	wvs – array of N wavelengths of those referebce images

	radstart – radius of start of segment

	radend – radius of end of segment

	phistart – azimuthal start of segment [radians]

	phiend – azimuthal end of segment [radians]

	padding – amount of padding on each side of sector

	IOWA – tuple (IWA,OWA) where IWA = Inner working angle and OWA = Outer working angle both in pixels.
It defines the separation interva in which klip will be run.

	ref_center – center of image

	numbasis – array of KL basis cutoffs

	parang – parallactic angle of input image [DEGREES]

	ref_wv – wavelength of science image

	fmout – numpy output array for FM output. Shape is (N, y, x, b)

	klipped – array of shape (p,b) that is the PSF subtracted data for each of the b KLIP basis
cutoffs. If numbasis was an int, then sub_img_row_selected is just an array of length p

	kwargs – any other variables that we don’t use but are part of the input

	
generate_model_sci(input_img_shape, section_ind, pa, wv, radstart, radend, phistart, phiend, padding, ref_center, parang, ref_wv, sep_fk, pa_fk)

	Generate model PSFs at the correct location of this segment for each image denoated by its wv and parallactic angle

	Parameters:	
	pas – array of N parallactic angles corresponding to N images [degrees]

	wvs – array of N wavelengths of those images

	radstart – radius of start of segment

	radend – radius of end of segment

	phistart – azimuthal start of segment [radians]

	phiend – azimuthal end of segment [radians]

	padding – amount of padding on each side of sector

	ref_center – center of image

	parang – parallactic angle of input image [DEGREES]

	ref_wv – wavelength of science image

	Returns:	array of size (N, p) where p is the number of pixels in the segment

	Return type:	models

	
generate_model_sci_nearestNeigh(input_img_shape, section_ind, pa, wv, radstart, radend, phistart, phiend, padding, ref_center, parang, ref_wv, sep_fk, pa_fk)

	Generate model PSFs at the correct location of this segment for each image denoated by its wv and parallactic angle

	Parameters:	
	pas – array of N parallactic angles corresponding to N images [degrees]

	wvs – array of N wavelengths of those images

	radstart – radius of start of segment

	radend – radius of end of segment

	phistart – azimuthal start of segment [radians]

	phiend – azimuthal end of segment [radians]

	padding – amount of padding on each side of sector

	ref_center – center of image

	parang – parallactic angle of input image [DEGREES]

	ref_wv – wavelength of science image

	Returns:	array of size (N, p) where p is the number of pixels in the segment

	Return type:	models

	
generate_models(input_img_shape, section_ind, pas, wvs, radstart, radend, phistart, phiend, padding, ref_center, parang, ref_wv, sep_fk, pa_fk)

	Generate model PSFs at the correct location of this segment for each image denoated by its wv and parallactic angle

	Parameters:	
	pas – array of N parallactic angles corresponding to N images [degrees]

	wvs – array of N wavelengths of those images

	radstart – radius of start of segment

	radend – radius of end of segment

	phistart – azimuthal start of segment [radians]

	phiend – azimuthal end of segment [radians]

	padding – amount of padding on each side of sector

	ref_center – center of image

	parang – parallactic angle of input image [DEGREES]

	ref_wv – wavelength of science image

	Returns:	array of size (N, p) where p is the number of pixels in the segment

	Return type:	models

	
generate_models_nearestNeigh(input_img_shape, section_ind, pas, wvs, radstart, radend, phistart, phiend, padding, ref_center, parang, ref_wv, sep_fk, pa_fk)

	Generate model PSFs at the correct location of this segment for each image denoated by its wv and parallactic angle

	Parameters:	
	pas – array of N parallactic angles corresponding to N images [degrees]

	wvs – array of N wavelengths of those images

	radstart – radius of start of segment

	radend – radius of end of segment

	phistart – azimuthal start of segment [radians]

	phiend – azimuthal end of segment [radians]

	padding – amount of padding on each side of sector

	ref_center – center of image

	parang – parallactic angle of input image [DEGREES]

	ref_wv – wavelength of science image

	Returns:	array of size (N, p) where p is the number of pixels in the segment

	Return type:	models

	
skip_section(radstart, radend, phistart, phiend)

	Returns a boolean indicating if the section defined by (radstart, radend, phistart, phiend) should be skipped.
When True is returned the current section in the loop in klip_parallelized() is skipped.

	Parameters:	
	radstart – minimum radial distance of sector [pixels]

	radend – maximum radial distance of sector [pixels]

	phistart – minimum azimuthal coordinate of sector [radians]

	phiend – maximum azimuthal coordinate of sector [radians]

	Returns:	False so by default it never skips.

	Return type:	Boolean

pyklip.fmlib.nofm module

	
class pyklip.fmlib.nofm.NoFM(inputs_shape, numbasis)

	Bases: object

Super class for all forward modelling classes. Has fall-back functions for all fm dependent calls so that each FM class does
not need to implement functions it doesn’t want to. Should do no forward modelling and just do regular KLIP by itself

	
alloc_fmout(output_img_shape)

	Allocates shared memory for the output of the forward modelling

	Parameters:	output_img_shape – shape of output image (usually N,y,x,b)

	Returns:	mp.array to store FM data in
fmout_shape: shape of FM data array

	Return type:	fmout

	
alloc_interm(max_sector_size, numsciframes)

	Allocates shared memory array for intermediate step

Intermediate step is allocated for a sector by sector basis

	Parameters:	max_sector_size – number of pixels in this sector. Max because this can be variable. Stupid rotating sectors

	Returns:	mp.array to store intermediate products from one sector in
interm_shape:shape of interm array (used to convert to numpy arrays)

	Return type:	interm

	
alloc_output()

	Allocates shared memory array for final output

Only use multiprocessing data structors as we are using the multiprocessing class

Args:

	Returns:	mp.array to store final outputs in (shape of (N*wv, y, x, numbasis))
outputs_shape: shape of outputs array to convert to numpy arrays

	Return type:	outputs

	
alloc_perturbmag(output_img_shape, numbasis)

	Allocates shared memory to store the fractional magnitude of the linear KLIP perturbation

	Parameters:	
	output_img_shape – shape of output image (usually N,y,x,b)

	numbasis – array/list of number of KL basis cutoffs requested

	Returns:	mp.array to store linaer perturbation magnitude
perturbmag_shape: shape of linear perturbation magnitude

	Return type:	perturbmag

	
cleanup_fmout(fmout)

	After running KLIP-FM, if there’s anything to do to the fmout array (such as reshaping it), now’s the time
to do that before outputting it

	Parameters:	fmout – numpy array of ouput of FM

	Returns:	same but cleaned up if necessary

	Return type:	fmout

	
fm_end_sector(selfself, **kwargs)

	Does some forward modelling at the end of a sector after all images have been klipped for that sector.

	
fm_from_eigen(**kwargs)

	Generate forward models using the KL modes, eigenvectors, and eigenvectors from KLIP
This is called immediately after regular KLIP

	
save_fmout(dataset, fmout, outputdir, fileprefix, numbasis, klipparams=None, calibrate_flux=False, spectrum=None)

	Saves the fmout data to disk following the instrument’s savedata function

	Parameters:	
	dataset – Instruments.Data instance. Will use its dataset.savedata() function to save data

	fmout – the fmout data passed from fm.klip_parallelized which is passed as the output of cleanup_fmout

	outputdir – output directory

	fileprefix – the fileprefix to prepend the file name

	numbasis – KL mode cutoffs used

	klipparams – string with KLIP-FM parameters

	calibrate_flux – if True, flux calibrate the data (if applicable)

	spectrum – if not None, the spectrum to weight the data by. Length same as dataset.wvs

	
skip_section(radstart, radend, phistart, phiend)

	Returns a boolean indicating if the section defined by (radstart, radend, phistart, phiend) should be skipped.
When True is returned the current section in the loop in klip_parallelized() is skipped.

	Parameters:	
	radstart – minimum radial distance of sector [pixels]

	radend – maximum radial distance of sector [pixels]

	phistart – minimum azimuthal coordinate of sector [radians]

	phiend – maximum azimuthal coordinate of sector [radians]

	Returns:	False so by default it never skips.

	Return type:	Boolean

Module contents

pyklip.instruments package

Subpackages

	pyklip.instruments.P1640_support package
	Submodules

	pyklip.instruments.P1640_support.P1640_cube_checker module

	pyklip.instruments.P1640_support.P1640_cube_checker_interactive module

	pyklip.instruments.P1640_support.P1640_spot_checker module

	pyklip.instruments.P1640_support.P1640contrast module

	pyklip.instruments.P1640_support.P1640cores module

	pyklip.instruments.P1640_support.P1640spots module

	pyklip.instruments.P1640_support.P1640utils module

	Module contents

	pyklip.instruments.utils package
	Submodules

	pyklip.instruments.utils.nair module

	Module contents

Submodules

pyklip.instruments.GPI module

pyklip.instruments.Instrument module

	
class pyklip.instruments.Instrument.Data

	Bases: object

Abstract Class with the required fields and methods that need to be implemented

	
input

	Array of shape (N,y,x) for N images of shape (y,x)

	
centers

	Array of shape (N,2) for N centers in the format [x_cent, y_cent]

	
filenums

	Array of size N for the numerical index to map data to file that was passed in

	
filenames

	Array of size N for the actual filepath of the file that corresponds to the data

	
PAs

	Array of N for the parallactic angle rotation of the target (used for ADI) [in degrees]

	
wvs

	Array of N wavelengths of the images (used for SDI) [in microns]. For polarization data, defaults to “None”

	
wcs

	Array of N wcs astormetry headers for each image.

	
IWA

	a floating point scalar (not array). Specifies to inner working angle in pixels

	
OWA

	(optional) specifies outer working angle in pixels

	
output

	Array of shape (b, len(files), len(uniq_wvs), y, x) where b is the number of different KL basis cutoffs

	
creator

	(optional) string for creator of the data (used to identify pipelines that call pyklip)

	
klipparams

	(optional) a string that saves the most recent KLIP parameters

	
flipx

	(optional) True by default. Determines whether a relfection about the x axis is necessary to rotate image North-up East left

	
readdata()

	reread in the dadta

	
savedata()

	save a specified data in the GPI datacube format (in the 1st extension header)

	
calibrate_output()

	flux calibrate the output data

	
IWA

	a floating point scalar (not array). Specifies to inner working angle in pixels

	
PAs

	Array of N for the parallactic angle rotation of the target (used for ADI) [in degrees]

	
calibrate_output(img, spectral=False)

	Calibrates the flux of an output image. Can either be a broadband image or a spectral cube depending
on if the spectral flag is set.

Assumes the broadband flux calibration is just multiplication by a single scalar number whereas spectral
datacubes may have a separate calibration value for each wavelength

	Parameters:	
	img – unclaibrated image.
If spectral is not set, this can either be a 2-D or 3-D broadband image
where the last two dimensions are [y,x]
If specetral is True, this is a 3-D spectral cube with shape [wv,y,x]

	spectral – if True, this is a spectral datacube. Otherwise, it is a broadband image.

	Returns:	calibrated image of the same shape

	Return type:	calib_img

	
centers

	Image centers. Shape of (N, 2) where the 2nd dimension is [x,y] pixel coordinate (in that order)

	
filenames

	Array of size N for the actual filepath of the file that corresponds to the data

	
filenums

	Array of size N for the numerical index to map data to file that was passed in

	
input

	Input Data. Shape of (N, y, x)

	
output

	Array of shape (b, len(files), len(uniq_wvs), y, x) where b is the number of different KL basis cutoffs

	
readdata(filepaths)

	Reads in the data from the files in the filelist and writes them to fields

	
static savedata(filepath, data, klipparams=None, filetype='', zaxis=None, more_keywords=None)

	Saves data for this instrument

	Parameters:	
	filepath – filepath to save to

	data – data to save

	klipparams – a string of KLIP parameters. Write it to the ‘PSFPARAM’ keyword

	filtype – type of file (e.g. “KL Mode Cube”, “PSF Subtracted Spectral Cube”). Wrriten to ‘FILETYPE’ keyword

	zaxis – a list of values for the zaxis of the datacub (for KL mode cubes currently)

	more_keywords (dictionary) – a dictionary {key: value, key:value} of header keywords and values which will
written into the primary header

	
wcs

	Array of N wcs astormetry headers for each image.

	
wvs

	Array of N wavelengths (used for SDI) [in microns]. For polarization data, defaults to “None”

	
class pyklip.instruments.Instrument.GenericData(input_data, centers, parangs=None, wvs=None, IWA=0, filenames=None)

	Bases: pyklip.instruments.Instrument.Data

Basic class to interface with a basic direct imaging dataset

	
input

	Array of shape (N,y,x) for N images of shape (y,x)

	
centers

	Array of shape (N,2) for N centers in the format [x_cent, y_cent]

	
filenums

	Array of size N for the numerical index to map data to file that was passed in

	
filenames

	Array of size N for the actual filepath of the file that corresponds to the data

	
PAs

	Array of N for the parallactic angle rotation of the target (used for ADI) [in degrees]

	
wvs

	Array of N wavelengths of the images (used for SDI) [in microns]. For polarization data, defaults to “None”

	
wcs

	Array of N wcs astormetry headers for each image.

	
IWA

	a floating point scalar (not array). Specifies to inner working angle in pixels

	
output

	Array of shape (b, len(files), len(uniq_wvs), y, x) where b is the number of different KL basis cutoffs

	Parameters:	
	input_data – either a 1-D list of filenames to read in, or a 3-D cube of all data (N, y, x)

	centers – array of shape (N,2) for N centers in the format [x_cent, y_cent]

	parangs – Array of N for the parallactic angle rotation of the target (used for ADI) [in degrees]

	wvs – Array of N wavelengths of the images (used for SDI) [in microns]. For polarization data, defaults to “None”

	IWA – a floating point scalar (not array). Specifies to inner working angle in pixels

	filenames – Array of size N for the actual filepath of the file that corresponds to the data

	
IWA

	

	
PAs

	

	
calibrate_output(img, spectral=False)

	Calibrates the flux of an output image. Can either be a broadband image or a spectral cube depending
on if the spectral flag is set.

Assumes the broadband flux calibration is just multiplication by a single scalar number whereas spectral
datacubes may have a separate calibration value for each wavelength

	Parameters:	
	img – unclaibrated image.
If spectral is not set, this can either be a 2-D or 3-D broadband image
where the last two dimensions are [y,x]
If specetral is True, this is a 3-D spectral cube with shape [wv,y,x]

	spectral – if True, this is a spectral datacube. Otherwise, it is a broadband image.

	Returns:	calibrated image of the same shape

	Return type:	calib_img

	
centers

	

	
filenames

	

	
filenums

	

	
input

	

	
output

	

	
readdata(filepaths)

	Reads in the data from the files in the filelist and writes them to fields.

	
savedata(filepath, data, klipparams=None, filetype='', zaxis=None, more_keywords=None)

	Saves data for this instrument

	Parameters:	
	filepath – filepath to save to

	data – data to save

	klipparams – a string of KLIP parameters. Write it to the ‘PSFPARAM’ keyword

	filtype – type of file (e.g. “KL Mode Cube”, “PSF Subtracted Spectral Cube”). Wrriten to ‘FILETYPE’ keyword

	zaxis – a list of values for the zaxis of the datacub (for KL mode cubes currently)

	more_keywords (dictionary) – a dictionary {key: value, key:value} of header keywords and values which will
written into the primary header

	
wcs

	

	
wvs

	

pyklip.instruments.NIRC2 module

pyklip.instruments.P1640 module

pyklip.instruments.SPHERE module

	
class pyklip.instruments.SPHERE.Ifs(data_cube, psf_cube, info_fits, wavelength_info, psf_cube_size=21, nan_mask_boxsize=9, IWA=0.15)

	Bases: pyklip.instruments.Instrument.Data

A sequence of SPHERE IFS Data.

	Parameters:	
	data_cube – FITS file with a 4D-cube (Nfiles, Nwvs, Ny, Nx) with all IFS coronagraphic data

	psf_cube – FITS file with a 3-D (Nwvs, Ny, Nx) PSF cube

	info_fits – FITS file with a table in the 1st ext hdr with parallactic angle info

	wavelenegth_info – FITS file with a 1-D array (Nwvs) of the wavelength sol’n of a cube

	psf_cube_size – size of the psf cube to save (length along 1 dimension)

	nan_mask_boxsize – size of box centered around any pixel <= 0 to mask as NaNs

	IWA – inner working angle of the data in arcsecs

	
input

	Array of shape (N,y,x) for N images of shape (y,x)

	
centers

	Array of shape (N,2) for N centers in the format [x_cent, y_cent]

	
filenums

	Array of size N for the numerical index to map data to file that was passed in

	
filenames

	Array of size N for the actual filepath of the file that corresponds to the data

	
PAs

	Array of N for the parallactic angle rotation of the target (used for ADI) [in degrees]

	
wvs

	Array of N wavelengths of the images (used for SDI) [in microns]. For polarization data, defaults to “None”

	
IWA

	a floating point scalar (not array). Specifies to inner working angle in pixels

	
output

	Array of shape (b, len(files), len(uniq_wvs), y, x) where b is the number of different KL basis cutoffs

	
psfs

	Spectral cube of size (Nwv, psfy, psfx) where psf_cube_size defines the size of psfy, psfx.

	
psf_center

	[x, y] location of the center of the PSF for a frame in self.psfs

	
flipx

	True by default. Determines whether a relfection about the x axis is necessary to rotate image North-up East left

	
nfiles

	number of datacubes

	
nwvs

	number of wavelengths

	
IWA

	

	
PAs

	

	
calibrate_output(img, spectral=False, units='contrast')

	
	Calibrates the flux of an output image. Can either be a broadband image or a spectral cube depending

	on if the spectral flag is set.

	Args:

	
	img: unclaibrated image.

	If spectral is not set, this can either be a 2-D or 3-D broadband image
where the last two dimensions are [y,x]
If specetral is True, this is a 3-D spectral cube with shape [wv,y,x]

spectral: if True, this is a spectral datacube. Otherwise, it is a broadband image.
units: currently only support “contrast” w.r.t central star

	Return:

	img: calibrated image of the same shape (this is the same object as the input!!!)

	
centers

	

	
filenames

	

	
filenums

	

	
input

	

	
north_offset = -102.18

	

	
output

	

	
platescale = 0.007462

	

	
readdata(filepaths)

	Reads in the data from the files in the filelist and writes them to fields

	
savedata(filepath, data, klipparams=None, filetype='', zaxis=None, more_keywords=None)

	
Save SPHERE Data.

Args:

	filepath: path to file to output

	data: 2D or 3D data to save
klipparams: a string of klip parameters
filetype: filetype of the object (e.g. “KL Mode Cube”, “PSF Subtracted Spectral Cube”)
zaxis: a list of values for the zaxis of the datacub (for KL mode cubes currently)
more_keywords (dictionary) : a dictionary {key: value, key:value} of header keywords and values which will

written into the primary header

	
wcs

	

	
wvs

	

	
class pyklip.instruments.SPHERE.Irdis(data_cube, psf_cube, info_fits, wavelength_str, psf_cube_size=21, IWA=0.2)

	Bases: pyklip.instruments.Instrument.Data

A sequence of SPHERE IRDIS Data.

	Parameters:	
	data_cube – FITS file with a 4D-cube (Nfiles, Nwvs, Ny, Nx) with all IFS coronagraphic data

	psf_cube – FITS file with a 3-D (Nwvs, Ny, Nx) PSF cube

	info_fits – FITS file with a table in the 1st ext hdr with parallactic angle info

	wavelength_str – string to specifiy the band (e.g. “H2H3”, “K1K2”)

	psf_cube_size – size of the psf cube to save (length along 1 dimension)

	IWA – inner working angle of the data in arcsecs

	
input

	Array of shape (N,y,x) for N images of shape (y,x)

	
centers

	Array of shape (N,2) for N centers in the format [x_cent, y_cent]

	
filenums

	Array of size N for the numerical index to map data to file that was passed in

	
filenames

	Array of size N for the actual filepath of the file that corresponds to the data

	
PAs

	Array of N for the parallactic angle rotation of the target (used for ADI) [in degrees]

	
wvs

	Array of N wavelengths of the images (used for SDI) [in microns]. For polarization data, defaults to “None”

	
IWA

	a floating point scalar (not array). Specifies to inner working angle in pixels

	
output

	Array of shape (b, len(files), len(uniq_wvs), y, x) where b is the number of different KL basis cutoffs

	
psfs

	Spectral cube of size (2, psfy, psfx) where psf_cube_size defines the size of psfy, psfx.

	
psf_center

	[x, y] location of the center of the PSF for a frame in self.psfs

	
flipx

	True by default. Determines whether a relfection about the x axis is necessary to rotate image North-up East left

	
nfiles

	number of datacubes

	
nwvs

	number of wavelengths (i.e. 2 for dual band imaging)

	
IWA

	

	
PAs

	

	
calibrate_output(img, spectral=False, units='contrast')

	
	Calibrates the flux of an output image. Can either be a broadband image or a spectral cube depending

	on if the spectral flag is set.

	Args:

	
	img: unclaibrated image.

	If spectral is not set, this can either be a 2-D or 3-D broadband image
where the last two dimensions are [y,x]
If specetral is True, this is a 3-D spectral cube with shape [wv,y,x]

spectral: if True, this is a spectral datacube. Otherwise, it is a broadband image.
units: currently only support “contrast” w.r.t central star

	Return:

	img: calibrated image of the same shape (this is the same object as the input!!!)

	
centers

	

	
filenames

	

	
filenums

	

	
input

	

	
north_offset = -1.75

	

	
output

	

	
platescale = 0.012255

	

	
readdata(filepaths)

	Reads in the data from the files in the filelist and writes them to fields

	
savedata(filepath, data, klipparams=None, filetype='', zaxis=None, more_keywords=None)

	
Save SPHERE Data.

Args:

	filepath: path to file to output

	data: 2D or 3D data to save
klipparams: a string of klip parameters
filetype: filetype of the object (e.g. “KL Mode Cube”, “PSF Subtracted Spectral Cube”)
zaxis: a list of values for the zaxis of the datacub (for KL mode cubes currently)
more_keywords (dictionary) : a dictionary {key: value, key:value} of header keywords and values which will

written into the primary header

	
wavelengths = {'K1K2': (2.1, 2.244), 'Y2Y3': (1.02, 1.073), 'H3H4': (1.667, 1.731), 'J2J3': (1.19, 1.27), 'H2H3': (1.587, 1.667)}

	

	
wcs

	

	
wvs

	

Module contents

pyklip.instruments.P1640_support package

Submodules

pyklip.instruments.P1640_support.P1640_cube_checker module

Given a datacube, find the four corresponding spot files.
Plot the calculated positions on top of the original cube.

Run from an ipython terminal with:
%run spot_checker.py full/path/to/cube.fits

	
class pyklip.instruments.P1640_support.P1640_cube_checker.ConfigAction(option_strings, dest, nargs=None, **kwargs)

	Bases: argparse.Action

Create a custom action to parse the

	
pyklip.instruments.P1640_support.P1640_cube_checker.dnah_spot_directory = '/data/p1640/data/users/spot_positions/jonathan/'

	Pseudocode –

	Load list of files

	Create the “good files” dictionary

3. For each file:
3a. Split offt a thread for drawing the cube
3b. Ask for user input
4. When the user provides ‘y’ or ‘n’, update the dictionary and kill the drawing thread
5. Move on to the next file

	
pyklip.instruments.P1640_support.P1640_cube_checker.draw_cube(cube, cube_name, header, seeing, airmass, cube_ix)

	Make a figure and draw cube slices on it

	
pyklip.instruments.P1640_support.P1640_cube_checker.draw_spot_cube(cube, cube_name, spots)

	Make a figure and draw cube slices on it
spots are a list of [row, col] positions for each spot

	
pyklip.instruments.P1640_support.P1640_cube_checker.get_total_exposure_time(fitsfiles, unit=Unit("min"))

	Accept a list of fits files and return the total exposure time
Input:

fitsfiles: single fits file or list of files with keyword ‘EXPTIME’ in the header
units: [minute] astropy.units unit for the output

	Output:

	tot_exp_time: the sum of the exposure times for each cube, in minutes

	
pyklip.instruments.P1640_support.P1640_cube_checker.plot_airmass_and_seeing(fitsfiles)

	

	
pyklip.instruments.P1640_support.P1640_cube_checker.run_checker(fitsfiles)

	Run the checker

	
pyklip.instruments.P1640_support.P1640_cube_checker.run_spot_checker(files=None, config=None, spot_path=None)

	Supply ONE OF:
files: list of files
config: config file with a list of files

	
pyklip.instruments.P1640_support.P1640_cube_checker.usage()

	

pyklip.instruments.P1640_support.P1640_cube_checker_interactive module

Observational SNR and exposure time calculator
Jonathan Aguilar
Nov. 15, 2013

	
class pyklip.instruments.P1640_support.P1640_cube_checker_interactive.ConfigAction(option_strings, dest, nargs=None, **kwargs)

	Bases: argparse.Action

Create a custom action to parse the command line arguments

	
class pyklip.instruments.P1640_support.P1640_cube_checker_interactive.CubeChecker(master, fitsfiles, spot_mode=False, spot_path='/data/p1640/data/users/spot_positions/jonathan/')

	
	
activate_printing(event)

	

	
bind_buttons_to_frame(frame_ref)

	These are the buttons you want to be recognized by all the frames

	
current_cube

	

	
draw_spots_on_cube()

	

	
keep_button_pushed(event)

	

	
load_selected_cube()

	Read the highlighted fitsfile, get the datacube from it, and display it
This function does the heavy lifting and calls the other update functions

	check for spot mode

	set the current file index

	set the current file using the current file index

	load the cube from the current file

	
load_spot_files()

	based on the current cube and the spot path, get the spot files

	
next_button_pushed(event)

	

	
next_cube()

	

	
prev_button_pushed(event)

	

	
prev_cube()

	

	
print_good_cubes()

	

	
quit_button_pushed(event)

	

	
scroll_cube_left(event)

	

	
scroll_cube_right(event)

	

	
toggle_autoscroll()

	

	
toggle_check()

	

	
update_cube_stats()

	

	
update_cubeax_display(event=None)

	

	
update_seeing_and_airmass()

	

	
pyklip.instruments.P1640_support.P1640_cube_checker_interactive.get_total_exposure_time(fitsfiles, unit=Unit("min"))

	Accept a list of fits files and return the total exposure time
Input:

fitsfiles: single fits file or list of files with keyword ‘EXPTIME’ in the header
units: [minute] astropy.units unit for the output

	Output:

	tot_exp_time: the sum of the exposure times for each cube, in minutes

pyklip.instruments.P1640_support.P1640_spot_checker module

Given a datacube, find the four corresponding spot files.
Plot the calculated positions on top of the original cube.

Run from an ipython terminal with:
%run spot_checker.py full/path/to/cubes.fits

	
class pyklip.instruments.P1640_support.P1640_spot_checker.ConfigAction(option_strings, dest, nargs=None, **kwargs)

	Bases: argparse.Action

Create a custom action to parse the

	
pyklip.instruments.P1640_support.P1640_spot_checker.draw_cube(cube, cube_name, spots)

	Make a figure and draw cube slices on it
spots are a list of [row, col] positions for each spot

	
pyklip.instruments.P1640_support.P1640_spot_checker.run_checker(files=None, config=None, spot_path=None)

	Supply ONE OF:
files: list of files
config: config file with a list of files

pyklip.instruments.P1640_support.P1640contrast module

Utilities specific to generating contrast curves

	
pyklip.instruments.P1640_support.P1640contrast.calc_contrast_multifile(core_files, datacube)

	Assemble a median core PSF out of the list of core_files, and return
a datacube scaled by the core flux

	
pyklip.instruments.P1640_support.P1640contrast.calc_contrast_single_file(filename, core_info=None, chans='all')

	Calculate the radiall-averaged variance for a pyklip-reduced file for a single channel
Input:

filename: full path to a pyklip-processed datacube
core_info: pandas DataFrame with ‘radius’ and ‘flux’ columns
chans: iterative type list of channels

	
pyklip.instruments.P1640_support.P1640contrast.make_contrast_plot(contrast_map, title=None, contrast_range=None, plate_scale=19.2, pckwargs=None)

	Plot contrast against separation and channel number.
Input:

contrast_map: Pandas DataFrame. See required columns below.
name: plot title (preferably the file name corresponding to the contrast map)
plate_scale (19.2 mas/pix): convert between pixels and mas
contrast_range (None): tuple of upper and lower bounds for contrast plot. If none, min-max.
pckwargs: dictionary of arguments that can be passed to plt.pcolor

	Returns:	plt.figure() object

	Return type:	fig

contrast_map: one column is titled ‘rad’, this is the separation in pixels
The rest of the columns are titled ‘chan##’, where ## is the channel number.

	
pyklip.instruments.P1640_support.P1640contrast.make_contrast_summary_plot(contrast_map_dict, chan='chan23', title=None, plate_scale=19.2, kwargs=None)

	Plot the mean, min, and max contrast in the given channel for all the reductions

pyklip.instruments.P1640_support.P1640cores module

This library has method for operating on P1640 core images

	
pyklip.instruments.P1640_support.P1640cores.aperture_convolve_cube(orig_cube, aperture_radii, apkwargs={'subpixels': 4, 'method': 'subpixel'})

	Perform apeture photometry on every pixel in a datacube or image
Wrapper for _aperture_convolve_img to handle 2-D and 3-D data
Input:

orig_cube: [Nlambda x] Npix x Npix datacube
aperture_radii: Nlambda array of aperture radii
apkwargs: dictionary of arguments to pass to aperture_photometry

Default: {‘method’:’subpixel’,’subpixels’:4}

	Returns:	cube with shape of orig_cube of the aperture photometry

	Return type:	phot_cube

	
pyklip.instruments.P1640_support.P1640cores.centroid_image(orig_img)

	Centroid an image - weighted sum of pixels
Input:

orig_img: 2D array

	Returns:	[y,x] floating-point coordinates of the centroid

	
pyklip.instruments.P1640_support.P1640cores.combine_multiple_cores(multiple_core_info)

	Combine the stellar flux and radii information from multiple cores in the proper way.

	
pyklip.instruments.P1640_support.P1640cores.get_PSF_center(orig_cube, refchan=26, fine=False)

	Return the PSF center at the pixel level (default) or subpixel level (fine=True)
Input:

orig_cube: [Nlambda x] Npix x Npix datacube (or image)
refchan(=26): Reference channel for the initial center estimate
fine_centering(=False): After getting a rough estimate of the center, centroid the image

	Returns:	Nlamdba x 2 array of pixel indices for the PSF center

	
pyklip.instruments.P1640_support.P1640cores.get_cube_xsection(orig_cube, center, width)

	Select the cross-section of a cube centered in center with 1/2-width width
Input:

orig_cube: Nlambda x Npix x Npix datacube
center: [row, col] index
width: 1/2-width of cross-section

	Returns:	Nlambda x (2*width+1) x (2*width+1) cube cross-section

	Return type:	cube_cutout

	
pyklip.instruments.P1640_support.P1640cores.get_encircled_energy_cube(orig_cube, frac=0.5)

	Get the fractional encircled energy of a PSF in each channel of a datacube.
Basically a wrapper for _get_encircled_energy_image. Accepts 2-D and 3-D input.
Input:

orig_cube: unocculted core cube [Nlambda x]Npix x Npix
frac: encircled energy cutoff

	Returns:	[starx, stary, radius, flux]

	Return type:	Pandas Dataframe with Nlambda columns

	
pyklip.instruments.P1640_support.P1640cores.get_injection_core(core_cubes)

	Remember, the injected PSF needs to be the SAME as the reference PSF, except for a scaling factor!
Combine multiple cubes into a single core file for injection.
Make sure that the total injected flux is the sum of the pixels!
Outline:
1. Get the encircled energy fraction for all the cores (frac=1)
2. For each core, prepare a zero-cube with width of the largest radius + 1
3. Add the core from each channel to the zero-cube

	
pyklip.instruments.P1640_support.P1640cores.make_median_core(core_cubes)

	Take a set of core cubes and assemble a median cube out of them. Set all non-PSF pixels to 0
Input:

core_cubes: Ncubes x Nlambda x Npix x Npix set of cores

	Returns:	Nlambda x Npix x Npix

	Return type:	median_core

	
pyklip.instruments.P1640_support.P1640cores.zero_pad_core_box(core_cutout, centers, radii)

	Get a cube of core cutouts with a center and a radius for each channel
Inside/outside the radius is determined by the center of the pixel.
Negative pixels are set to 0.

pyklip.instruments.P1640_support.P1640spots module

	
class pyklip.instruments.P1640_support.P1640spots.P1640params

	
	
aperture_refchan = 3.5

	

	
channels = array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31])

	

	
nchan = 32

	

	
num_spots = 4

	

	
refchan = 26

	

	
reflambda = 1.663451612903226

	

	
scale_factors = array([0.58252371, 0.59858049, 0.61463727, 0.63069405, 0.64675083, 0.66280761, 0.67886439, 0.69492117, 0.71097795, 0.72703473, 0.74309151, 0.75914829, 0.77520507, 0.79126185, 0.80731863, 0.82337541, 0.8394322 , 0.85548898, 0.87154576, 0.88760254, 0.90365932, 0.9197161 , 0.93577288, 0.95182966, 0.96788644, 0.98394322, 1. , 1.01605678, 1.03211356, 1.04817034, 1.06422712, 1.0802839])

	

	
wlsol = array([0.969 , 0.99570968, 1.02241935, 1.04912903, 1.07583871, 1.10254839, 1.12925806, 1.15596774, 1.18267742, 1.2093871 , 1.23609677, 1.26280645, 1.28951613, 1.31622581, 1.34293548, 1.36964516, 1.39635484, 1.42306452, 1.44977419, 1.47648387, 1.50319355, 1.52990323, 1.5566129 , 1.58332258, 1.61003226, 1.63674194, 1.66345161, 1.69016129, 1.71687097, 1.74358065, 1.77029032, 1.797])

	

	
pyklip.instruments.P1640_support.P1640spots.check_bad_channels(rad_spot)

	Check that the spot positions increase monotonically in radius.
If they don’t, return the positions that do not follow monotonically.
Input:

rad_spot: Nchan array of radial sep of a spot from star

	Output:

	bad_chans: a list of channel pairs that fail the check and need fixing

	
pyklip.instruments.P1640_support.P1640spots.check_bad_spots(spot, centers)

	
	Input:

	spot: y,x positions for a spot
centers: y,x positions for the center

	Output:

	fixed_spot: a fixed spot position y,x

	
pyklip.instruments.P1640_support.P1640spots.fit_grid_spot(img, center, loc=None)

	Fit spot with a 2-D Gaussian
Inputs:

img: 2-D masked_array to fit
center: center of the image in (row, col) order
loc (optional): initial position guess in (row, col) order

	
pyklip.instruments.P1640_support.P1640spots.fit_grid_spots(masked_cubes, centers, spots_guesses)

	Wrapper for fit_grid_spot to loop over all four spots
Input:

masked_cubes: Nspot x Nchan x Npix x Npix array of masks
centers: Nchan x 2 array of (row, col) guesses for spot centers
spot_guesses: Nspot x Nchan x 2 (row, col) guesses for spot locations

	Output:

	spot_fits: List of astropy.model fits
spot_locs: Nspot x Nchan x 2 array of spot locations from fitting

	
pyklip.instruments.P1640_support.P1640spots.fit_poly(ind, dep, order)

	Takes in an array of positions in row, col format and returns a polynomial
that fits them to col = b + C*row, where C is a vector of coefficients
Fitting is done by least squares
Input:

ind: dependent variable (prob channel number)
dep: independent variable (prob x or y spot position)

	Returns:	array of polynomial coefficients

	
pyklip.instruments.P1640_support.P1640spots.fix_bad_channels(spot, centers, bad_chans)

	
	Two cases:

	
	a spot jumps inwards

	a spot jumps outwards

In either case, remove both the failing spot and the one before it
and fit a cubic to the remaining points. Then, fix the spot that is
further from the fit.
Input:

spot: Nchan x 2 array of positions for one spot
centers: y,x positions for the star in each channel
bad_chan: index of a spot that does not monotonically increase in radius

	Output:

	fixed_spot: Nchan x 2 array of fixed positions for the spot

	
pyklip.instruments.P1640_support.P1640spots.get_centered_grid(img_shape, center)

	Return a coordinate grid shifted to the center

	
pyklip.instruments.P1640_support.P1640spots.get_initial_spot_guesses(cube, rotated_spots=False)

	

	
pyklip.instruments.P1640_support.P1640spots.get_points_from_poly(ind, coeffs)

	Get a polynomials coefficients and return the y-values given the independent values

	
pyklip.instruments.P1640_support.P1640spots.get_rotated_grid(img_shape, center, angle)

	Rotate a coordinate grid by some angle around a center

	
pyklip.instruments.P1640_support.P1640spots.get_scaling(spot_array, star_array=None, return_mean=True)

	Wrapper for get_single_cube_scaling_factors, to handle multiple cubes
Input:

spot_array: (Nfiles) x Nspots x Nchan x 2 array in (row, col) order
star_array: (Nfiles) x Nchan x 2 array of (row, column) star positions.

If not supplied, spot_array will be calculated from spot_array

	return_mean: (default False) If true, return mean scaling factor for

	each channel (useful for multiple cubes)

	Output:

	scaling_array: (Nfiles) x Nchan array of scaling fators

	
pyklip.instruments.P1640_support.P1640spots.get_scaling_and_centering_from_files(files, mean_scaling=True)

	Take some csv spot files, and return the star positions and
scaling factors for each datacube
Wrapper for get_scaling_and_centering_from_spots
Input:

	files: a list of fits files with data cubes

	if the files end in fits or csv, call appropriate routines

mean_scaling: [True] return the mean scaling of the 4 spots

	Output:

	scaling_factors: scaling factors for each slice of each cube
star_positions: star positions in each slice of each cube

	
pyklip.instruments.P1640_support.P1640spots.get_scaling_and_centering_from_spots(spot_positions, mean_scaling=True)

	Accepts an array of spots, and returns the scaling factors and centers.
See also: get_scaling_and_centering_from_files
Input:

spot_positions: Ncube x Nspot x Nchan x 2 array of (row, col) spot positions
mean_scaling: [True] return the average scaling of the 4 spots

	Output:

	scaling_factors: Ncube x Nchan array of scaling factors
star_positions: Ncube x Nchan x 2 array of (row, col) star positions

	
pyklip.instruments.P1640_support.P1640spots.get_single_cube_scaling_factors(spot_array, star_array=None)

	Get the scaling factors for a single cube
Input:

spot_array: Nspots x Nchan x 2 array of (row, column) spot positions
star_array: Nchan x 2 array of (row, column) star positions.

If not supplied, spot_array will be calculated from spot_array

	Output:

	
	scaling: Nspots x Nchan array of scaling factors, normalized to

	P1640params.refchan

	
pyklip.instruments.P1640_support.P1640spots.get_single_cube_spot_photometry(cube, spot_positions)

	Do aperture photometry on the spots. Will need to be careful about
aperture size for future comparison
Input:

cube: Nchan x Npix x Npix data cube to do photometry
spot_positions: Nspot x Nchan x 2 spot positions for apertures
scaling_factors: Nchan array for scaling apertures with wavelength

	Output:

	spot_phot: Nspot x Nchan array of spot photometry and spot errors

	
pyklip.instruments.P1640_support.P1640spots.get_single_cube_spot_positions(cube, rotated_spots=False)

	Return the spot positions for a single cube
Input:

cube: a data cube from P1640
rotated_spots: (False) if True, use the rotated masks

	Output:

	spot_array: Nspots x Nchan x 2 array of spot positions.

	
pyklip.instruments.P1640_support.P1640spots.get_single_cube_spot_positions_and_photometry(cube)

	Wrapper that combines get_single_cube_spot_positions and
get_single_cube_spot_photometry
Input:

cube: a datacube in P1640 format

	Output:

	spot_positions: Nspots x Nchan x 2 array of spot positions.
spot_photometry: Nspots x Nchan x 1 array of spot fluxes

	
pyklip.instruments.P1640_support.P1640spots.get_single_cube_star_positions(spot_array)

	Using the spot positions for a single cube, find the star position at each wavelength.
Input:

spot_array: Nspots x Nchan x 2 array of (row, column) spot positions

	Output:

	star_array: Nchan x 2 array of (row, column) star positions

	
pyklip.instruments.P1640_support.P1640spots.get_single_file_scaling_and_centering(fitsfile)

	Take a single fits file, and return the star positions and
scaling factors
See also: get_scalign_and_centering_from_spots
Input:

fitsfile: a single fits file with a P1640 cube

	Output:

	scaling_factors: scaling factors for each slice of the cube
star_positions: star positions in each slice of the cube

	
pyklip.instruments.P1640_support.P1640spots.get_single_file_spot_positions(fitsfile, rotated_spots=False)

	Wrapper for get_single_cube_spot_positions

	
pyklip.instruments.P1640_support.P1640spots.get_spot_positions(fitsfiles)

	Return the spot positions for a set of data cubes. Really just a wrapper
for get_single_cube_spot_positions
Input:

fitsfiles: a list of P1640 fits files

	Output:

	spot_array: Nfile x 4 x Nchan x 2 array of spot positions

	
pyklip.instruments.P1640_support.P1640spots.get_spot_positions_and_photometry(fitsfiles)

	Wrapper that combines get_single_cube_spot_positions and
get_single_cube_spot_photometry
Accept a list of fits files and returns the spot positions and
spot photometry
Input:

fitsfiles: a list of P1640 fits files

	Output:

	spot_array: Nfiles x Nspots x Nchan x 2 array of (row, col) positions
spot_phot: Nfils x Nspots x Nchan array of spot photometry

	
pyklip.instruments.P1640_support.P1640spots.get_star_positions(spot_array)

	Get the center of a set of 4 spots for a single cube
Input:

spot_locations: Nspot x Nlambda x 2 array of [row, col] spot positions

	Returns:	Nlambda x 2 array of [row, col] star positions

	Return type:	star_array

	
pyklip.instruments.P1640_support.P1640spots.guess_grid_spot_loc(img)

	get max pixel as initial guess of location

	
pyklip.instruments.P1640_support.P1640spots.make_mask_bar(img_shape, center, angle, width)

	Make a bar mask where all the pixels inside a bar through the center of
the image within some width are 1 and everything outside is 0
Inputs:

img_shape: the shape of the image in (row, col)
center: the center of the mask, in (row, col)
angle: angle measured counterclockwise from vertical, default in deg
width: with of bar in pixels

	Returns:	
	a masked array where the values inside the bar are False and

	outside the bar are True

	Return type:	mask

	
pyklip.instruments.P1640_support.P1640spots.make_mask_circle(img_shape, center, R)

	Make a circular mask, where everything inside a radius R around the center
is False and outside is True
Input:

img_shape: the shape of the image in (row, col)
center: the center of the mask, in (row, col)
R: the radius of the circle

	Returns:	a masked array of shape img_shape

	Return type:	mask

	
pyklip.instruments.P1640_support.P1640spots.make_mask_donut(img_shape, center, R0, R1)

	Make a donut mask centered on ‘center’ where the inside of the donut is
False and the outside of the donut is True

	
pyklip.instruments.P1640_support.P1640spots.make_mask_grid_spots(img_shape, centers, rotated_spots=False, nchan=32)

	Make a mask that shows only the grid spots
Input:

img_shape: the shape of the image to mask in (row, col)
centers: (Nchan x 2) array of centers of the mask in (row, col)
rotated_spots: [False] make mask for normal (False) or rotated (True) grid spots
nchan: number of spectral channels in the cube

	Returns:	Nspot x Nchan cube of masks

	Return type:	masks

	
pyklip.instruments.P1640_support.P1640spots.make_mask_half_img(img_shape, center, angle)

	Mask half the image, cutting it through the center at an arbitrary angle.
Angle is measured counterclockwise from vertical, and should be an
astropy units object, otherwise assume degrees.
Input:

img_shape: shape of image in (row, col)
center: the center of the mask in (row, col)
angle: angle measured counterclockwise from vertical, default in deg

	Output:

	
	mask: masked_array with a plane running through point (center) at angle

	(angle)

	
pyklip.instruments.P1640_support.P1640spots.make_mask_refined_grid_spots(img_shape, centers, spots, nchan=32)

	Make a new set of masks that are centered on the interpolated
grid spot locations
Input:

img_shape: x- and y-dimensions of image
centers: nchan x 2 array of star positions
spots: num_spots x nchan x 2 array of spot positions

	
pyklip.instruments.P1640_support.P1640spots.write_spots_to_file(data_filepath, spot_positions, output_dir=None, spotid=None, ext=None, overwrite=True)

	Write one file for each spot to the directory defined at the top of
this file. Output file name is data_filename -fits +spoti.csv.
Format is (row, col). Will overwrite existing files.
Input:

data_filename: the base name of the file with the spots
spot_positions: Nspot x Nchan x 2 array of spot positions
output_dir: directory to write the output files
overwrite: (True) overwrite existing spot files
spotid: (-spoti) identifier for the 4 different spot files
ext: (csv) file extension

	Returns:	None
writes a file to the output dir whose name corresponds to the cube
used to generate the spots + spotidN.ext (N is 0-3)

	
pyklip.instruments.P1640_support.P1640spots.write_spots_to_header(spots, fitsfile)

	Write the spot positions to a fits header
Input:

spots: 4 x Nchan x 2 array
fitsfile: full path to a fits file whose header you want to modify

pyklip.instruments.P1640_support.P1640utils module

	
pyklip.instruments.P1640_support.P1640utils.centroid_image(orig_img)

	Centroid an image - weighted sum of pixels
Input:

orig_img: 2D array

	Returns:	[y,x] floating-point coordinates of the centroid

	
pyklip.instruments.P1640_support.P1640utils.clean_bad_pixels(img, boxrad=2, thresh=3)

	Clean the image of outlier pixels using a median filter.
Input:

img: 2-d array
boxrad: 1/2 the fitler size (2*boxrad+1)
thresh: threshold (in stdev) for deciding a hot pixel

	Returns:	2_d array where hot pixels have been replaced by median values

	Return type:	cleaned_img

	
pyklip.instruments.P1640_support.P1640utils.clean_bad_pixels_cube(cube, boxrad=2, thresh=10)

	Clean the image of outlier pixels using a median filter.
Input:

cube: 3-D data cube
boxrad: 1/2 the fitler size (2*boxrad+1)
thresh: threshold (in stdev) for deciding a hot pixel

	
pyklip.instruments.P1640_support.P1640utils.find_bad_pix(img, median_img, std_img, thresh=3)

	Find the bad pixels

	
pyklip.instruments.P1640_support.P1640utils.get_PSF_center(cube, refchan=26, fine=False)

	Return the PSF center at the pixel level (default) or subpixel level (fine=True)
Input:

cube: Nlambda x Npix x Npix datacube
refchan(=26): Reference channel for the initial center estimate
fine_centering(=False): After getting a rough estimate of the center, centroid the image

	Returns:	Nlamdba x 2 array of pixel indices for the PSF center

	
pyklip.instruments.P1640_support.P1640utils.get_cube_xsection(orig_cube, center, width)

	Select the cross-section of a cube centered in center with 1/2-width width
Input:

orig_cube: Nlambda x Npix x Npix datacube
center: [row, col] index
width: 1/2-width of cross-section

	Returns:	Nlambda x (2*width+1) x (2*width+1) cube cross-section

	Return type:	cube_cutout

	
pyklip.instruments.P1640_support.P1640utils.get_encircled_energy_cube(cube, frac=0.5, refchan=26)

	Get the fractional encircled energy of a PSF in each channel of a datacube.
Basically a wrapper for get_encircled_energy_image
Input:

core_cube: unocculted core cube Nlambda x Npix x Npix
frac: encircled energy cutoff

	Returns:	[starx, stary, radius, flux]

	Return type:	Pandas Dataframe with Nlambda columns

	
pyklip.instruments.P1640_support.P1640utils.get_encircled_energy_image(im, center, frac=0.5)

	Given an image, find the fraction of encircled energy around the center.
Input:

im: unocculted core cube Npix x Npix
frac: encircled energy cutoff

	Returns:	[starx, stary, radius, flux, bgnd_mean, bgnd_std, bgnd_npix]

	Return type:	Pandas Series with the following indices

	
pyklip.instruments.P1640_support.P1640utils.set_zeros_to_nan(data)

	PyKLIP expects values outside the detector to be set to nan.
P1640 sets these (and also saturated pixels) to identically 0.
Find all the zeros and convert them to nans
Input:

data: N x Npix x Npix datacube or appended set of datacubes

	Returns:	data with nans instead of zeros

	Return type:	nandata

	
pyklip.instruments.P1640_support.P1640utils.table_to_TableHDU(table, kwargs={})

	Accept a table with a .colnames element and return it as an astropy
fits.TableHDU object. Only works with floating-point data atm.
Input:

table: astropy.table.Table object
kwargs: dict of keywords and arguments to pass to the HDU

	Returns:	fits TableHDU with an empty header

	Return type:	TableHDU

Module contents

pyklip.instruments.utils package

Submodules

pyklip.instruments.utils.nair module

	
pyklip.instruments.utils.nair.GetCoeff(i, P, T, H)

	Calculate the coefficients for the polynomial series expansion of index of refraction (Mathar (2008))
***Only valid for between 1.3 and 2.5 microns!

	Inputs:

	i: degree of expansion in wavenumber
P: Pressure in Pa
T: Temperature in Kelvin
H: relative humiditiy in % (i.e. between 0 and 100)

	Returns:	Coefficient [cm^-i]

	Return type:	coeff

	
pyklip.instruments.utils.nair.nMathar(wv, P, T, H=10)

	Calculate the index of refraction as given by Mathar (2008): http://arxiv.org/pdf/physics/0610256v2.pdf
***Only valid for between 1.3 and 2.5 microns!

	Inputs:

	wv: wavelength in microns
P: Pressure in Pa
T: Temperature in Kelvin
H: relative humiditiy in % (i.e. between 0 and 100)

	Returns:	index of refratoin

	Return type:	n

	
pyklip.instruments.utils.nair.nRoe(wv, P, T, fh20=0.0)

	Compute n for air from the formula in Henry Roe’s PASP paper: http://arxiv.org/pdf/astro-ph/0201273v1.pdf
which in turn is referenced from Allen’s Astrophysical Quantities.

	Inputs:

	wv: wavelength in microns
P: pressure in Pascal
T: temperature in Kelvin
fh20:fractional partial pressure of water (typically between 0 and 4%)

	Returns:	index of refraction of air

	Return type:	n

Module contents

pyklip.kpp package

Subpackages

	pyklip.kpp.detection package
	Submodules

	pyklip.kpp.detection.CADIQuicklook module

	pyklip.kpp.detection.ROC module

	pyklip.kpp.detection.detection module

	pyklip.kpp.detection.quicklook module

	Module contents

	pyklip.kpp.metrics package
	Submodules

	pyklip.kpp.metrics.FMMF module

	pyklip.kpp.metrics.crossCorr module

	pyklip.kpp.metrics.shapeOrMF module

	Module contents

	pyklip.kpp.stat package
	Submodules

	pyklip.kpp.stat.contrast module

	pyklip.kpp.stat.contrastFMMF module

	pyklip.kpp.stat.stat module

	pyklip.kpp.stat.statPerPix module

	pyklip.kpp.stat.statPerPix_utils module

	pyklip.kpp.stat.stat_utils module

	Module contents

	pyklip.kpp.utils package
	Submodules

	pyklip.kpp.utils.GOI module

	pyklip.kpp.utils.GPIimage module

	pyklip.kpp.utils.kppSuperClass module

	pyklip.kpp.utils.mathfunc module

	pyklip.kpp.utils.multiproc module

	Module contents

Submodules

pyklip.kpp.kppPerDir module

	
pyklip.kpp.kppPerDir.kppPerDir(inputDir, obj_list, spec_path_list=None, outputDir=None, mute_error=True, compact_date_convention=None)

	

	
pyklip.kpp.kppPerDir.run(obj)

	

Module contents

pyklip.kpp.detection package

Submodules

pyklip.kpp.detection.CADIQuicklook module

	
class pyklip.kpp.detection.CADIQuicklook.CADIQuicklook(inputDir=None, outputDir=None, mute=None, label=None, GOI_list_folder=None, overwrite=False, copy_save=None)

	Bases: pyklip.kpp.utils.kppSuperClass.KPPSuperClass

Class for CADI quicklook.

	
calculate()

	

	Parameters:	N – Defines the width of the ring by the number of pixels it has to contain

	Returns:	self.image the imput fits file.

	
check_existence()

	

	Returns:	False

	
check_existence_noInit(outputDir=None, folderName=None)

	

	Returns:	False

	
initialize(inputDir=None, outputDir=None, folderName=None, compact_date=None, label=None)

	Initialize the non general inputs that are needed for the metric calculation and load required files.

For this super class it simply reads the input file including fits headers and store it in self.image.
One can also overwrite inputDir, outputDir which is basically the point of this function.
The file is assumed here to be a fits containing a 2D image or a GPI 3D cube (assumes 37 spectral slice).

Example for inherited classes:
It can read the PSF cube or define the hat function.
It can also read the template spectrum in a 3D scenario.
It could also overwrite this function in case it needs to read multiple files or non fits file.

	Parameters:	
	inputDir – If defined it allows filename to not include the whole path and just the filename.
Files will be read from inputDir.
Note tat inputDir might be redefined using initialize at any point.
If inputDir is None then filename is assumed to have the absolute path.

	outputDir – Directory where to create the folder containing the outputs.
Note tat inputDir might be redefined using initialize at any point.
If outputDir is None:

If inputDir is defined: outputDir = inputDir+os.path.sep+”planet_detec_“

	folderName – Name of the folder containing the outputs. It will be located in outputDir.
Default folder name is “default_out”.
The convention is to have one folder per spectral template.
If the keyword METFOLDN is available in the fits file header then the keyword value is used no
matter the input.

	label – Define the suffix to the output folder when it is not defined. cf outputDir. Default is “default”.

	Returns:	None

	
load()

	

	Returns:	None

	
save()

	

	Returns:	None

pyklip.kpp.detection.ROC module

	
class pyklip.kpp.detection.ROC.ROC(filename, filename_detec, inputDir=None, outputDir=None, mute=None, N_threads=None, label=None, detec_distance=None, ignore_distance=None, GOI_list_folder=None, threshold_sampling=None, overwrite=False, IWA=None, OWA=None)

	Bases: pyklip.kpp.utils.kppSuperClass.KPPSuperClass

Class for SNR calculation.

	
calculate()

	

	Parameters:	N – Defines the width of the ring by the number of pixels it has to contain

	Returns:	self.image the imput fits file.

	
check_existence()

	

	Returns:	False

	
initialize(inputDir=None, outputDir=None, folderName=None, compact_date=None, label=None)

	Initialize the non general inputs that are needed for the metric calculation and load required files.

For this super class it simply reads the input file including fits headers and store it in self.image.
One can also overwrite inputDir, outputDir which is basically the point of this function.
The file is assumed here to be a fits containing a 2D image or a GPI 3D cube (assumes 37 spectral slice).

Example for inherited classes:
It can read the PSF cube or define the hat function.
It can also read the template spectrum in a 3D scenario.
It could also overwrite this function in case it needs to read multiple files or non fits file.

	Parameters:	
	inputDir – If defined it allows filename to not include the whole path and just the filename.
Files will be read from inputDir.
Note tat inputDir might be redefined using initialize at any point.
If inputDir is None then filename is assumed to have the absolute path.

	outputDir – Directory where to create the folder containing the outputs.
Note tat inputDir might be redefined using initialize at any point.
If outputDir is None:

If inputDir is defined: outputDir = inputDir+os.path.sep+”planet_detec_“

	folderName – Name of the folder containing the outputs. It will be located in outputDir.
Default folder name is “default_out”.
The convention is to have one folder per spectral template.
If the keyword METFOLDN is available in the fits file header then the keyword value is used no
matter the input.

	label – Define the suffix to the output folder when it is not defined. cf outputDir. Default is “default”.

	Returns:	None

	
load()

	

	Returns:	None

	
save()

	

	Returns:	None

	
pyklip.kpp.detection.ROC.gather_ROC(filename_filter, mute=False)

	Build the combined ROC curve from individual frame ROC curve.
It looks for all the file matching filename_filter using glob.glob and then add each individual ROC to build the
master ROC.

Plot master_N_false_pos vs master_N_true_detec to get a ROC curve.

	Parameters:	
	filename_filter – Filename filter with wild characters indicating which files to pick

	mute – If True, mute prints. Default is False.

	Returns:	threshold_sampling,master_N_false_pos,master_N_true_detec:
threshold_sampling: The metric sampling. It is the curve parametrization.
master_N_false_pos: Number of false positives as a function of threshold_sampling
master_N_true_detec: Number of true positives as a function of threshold_sampling

	
pyklip.kpp.detection.ROC.gather_multiple_ROCs(base_dir, filename_filter_list, mute=False, epoch_suffix=None, stars2ignore=None, band=None)

	Build the multiple combined ROC curve from individual frame ROC curve while making sure they have the same inputs.
If the folders are organized following the convention below then it will make sure there is a ROC file for each
filename_filter in each epoch. Otherwise it skips the epoch.

	The folders need to be organized as:

	base_dir/TARGET/autoreduced/EPOCH_Spec/filename_filter

In the function TARGET and EPOCH are wild characters.

It looks for all the file matching filename_filter using glob.glob and then add each individual ROC to build the
master ROC.

Plot master_N_false_pos vs master_N_true_detec to get a ROC curve.

	Parameters:	
	base_dir – Base directory from which the file search go.

	filename_filter – Filename filter with wild characters indicating which files to pick.

	mute – If True, mute prints. Default is False.

	Returns:	threshold_sampling,master_N_false_pos,master_N_true_detec:
threshold_sampling: The metric sampling. It is the curve parametrization.
master_N_false_pos: Number of false positives as a function of threshold_sampling
master_N_true_detec: Number of true positives as a function of threshold_sampling

	
pyklip.kpp.detection.ROC.get_all_false_pos(base_dir, filename_filter_list, threshold, mute=False, epoch_suffix=None, stars2ignore=None, IFSfilter=None)

	Build the multiple combined ROC curve from individual frame ROC curve while making sure they have the same inputs.
If the folders are organized following the convention below then it will make sure there is a ROC file for each
filename_filter in each epoch. Otherwise it skips the epoch.

	The folders need to be organized as:

	base_dir/TARGET/autoreduced/EPOCH_Spec/filename_filter

In the function TARGET and EPOCH are wild characters.

It looks for all the file matching filename_filter using glob.glob and then add each individual ROC to build the
master ROC.

Plot master_N_false_pos vs master_N_true_detec to get a ROC curve.

	Parameters:	
	base_dir – Base directory from which the file search go.

	filename_filter – Filename filter with wild characters indicating which files to pick.

	mute – If True, mute prints. Default is False.

	Returns:	threshold_sampling,master_N_false_pos,master_N_true_detec:
threshold_sampling: The metric sampling. It is the curve parametrization.
master_N_false_pos: Number of false positives as a function of threshold_sampling
master_N_true_detec: Number of true positives as a function of threshold_sampling

	
pyklip.kpp.detection.ROC.get_candidates(base_dir, filename_filter_list, threshold, mute=False, epoch_suffix=None, IWA=None, OWA=None, GOI_list_folder=None, ignore_distance=None, detec_distance=None, stars2ignore=None)

	Build the multiple combined ROC curve from individual frame ROC curve while making sure they have the same inputs.
If the folders are organized following the convention below then it will make sure there is a ROC file for each
filename_filter in each epoch. Otherwise it skips the epoch.

	The folders need to be organized as:

	base_dir/TARGET/autoreduced/EPOCH_Spec/filename_filter

In the function TARGET and EPOCH are wild characters.

It looks for all the file matching filename_filter using glob.glob and then add each individual ROC to build the
master ROC.

Plot master_N_false_pos vs master_N_true_detec to get a ROC curve.

	Parameters:	
	base_dir – Base directory from which the file search go.

	filename_filter – Filename filter with wild characters indicating which files to pick.

	mute – If True, mute prints. Default is False.

	Returns:	threshold_sampling,master_N_false_pos,master_N_true_detec:
threshold_sampling: The metric sampling. It is the curve parametrization.
master_N_false_pos: Number of false positives as a function of threshold_sampling
master_N_true_detec: Number of true positives as a function of threshold_sampling

	
pyklip.kpp.detection.ROC.get_metrics_stat(base_dir, filename_filter_list, IOWA, bins, GOI_list_folder, mute=False, epoch_suffix=None, stars2ignore=None, IFSfilter=None)

	Build the multiple combined ROC curve from individual frame ROC curve while making sure they have the same inputs.
If the folders are organized following the convention below then it will make sure there is a ROC file for each
filename_filter in each epoch. Otherwise it skips the epoch.

	The folders need to be organized as:

	base_dir/TARGET/autoreduced/EPOCH_Spec/filename_filter

In the function TARGET and EPOCH are wild characters.

It looks for all the file matching filename_filter using glob.glob and then add each individual ROC to build the
master ROC.

Plot master_N_false_pos vs master_N_true_detec to get a ROC curve.

	Parameters:	
	base_dir – Base directory from which the file search go.

	filename_filter – Filename filter with wild characters indicating which files to pick.

	mute – If True, mute prints. Default is False.

	Returns:	threshold_sampling,master_N_false_pos,master_N_true_detec:
threshold_sampling: The metric sampling. It is the curve parametrization.
master_N_false_pos: Number of false positives as a function of threshold_sampling
master_N_true_detec: Number of true positives as a function of threshold_sampling

pyklip.kpp.detection.detection module

	
class pyklip.kpp.detection.detection.Detection(filename, inputDir=None, outputDir=None, mute=None, N_threads=None, label=None, mask_radius=None, threshold=None, maskout_edge=None, overwrite=False, IWA=None, OWA=None)

	Bases: pyklip.kpp.utils.kppSuperClass.KPPSuperClass

Class for SNR calculation.

	
calculate()

	

	Parameters:	N – Defines the width of the ring by the number of pixels it has to contain

	Returns:	self.image the imput fits file.

	
check_existence()

	

	Returns:	False

	
initialize(inputDir=None, outputDir=None, folderName=None, compact_date=None, label=None)

	Initialize the non general inputs that are needed for the metric calculation and load required files.

For this super class it simply reads the input file including fits headers and store it in self.image.
One can also overwrite inputDir, outputDir which is basically the point of this function.
The file is assumed here to be a fits containing a 2D image or a GPI 3D cube (assumes 37 spectral slice).

Example for inherited classes:
It can read the PSF cube or define the hat function.
It can also read the template spectrum in a 3D scenario.
It could also overwrite this function in case it needs to read multiple files or non fits file.

	Parameters:	
	inputDir – If defined it allows filename to not include the whole path and just the filename.
Files will be read from inputDir.
Note tat inputDir might be redefined using initialize at any point.
If inputDir is None then filename is assumed to have the absolute path.

	outputDir – Directory where to create the folder containing the outputs.
Note tat inputDir might be redefined using initialize at any point.
If outputDir is None:

If inputDir is defined: outputDir = inputDir+os.path.sep+”planet_detec_“

	folderName – Name of the folder containing the outputs. It will be located in outputDir.
Default folder name is “default_out”.
The convention is to have one folder per spectral template.
If the keyword METFOLDN is available in the fits file header then the keyword value is used no
matter the input.

	label – Define the suffix to the output folder when it is not defined. cf outputDir. Default is “default”.

	Returns:	None

	
load()

	

	Returns:	None

	
save()

	

	Returns:	None

pyklip.kpp.detection.quicklook module

	
class pyklip.kpp.detection.quicklook.Quicklook(filename_proba, filename_detec, inputDir=None, outputDir=None, mute=None, label=None, GOI_list_folder=None, overwrite=False, copy_save=None, SNR=None)

	Bases: pyklip.kpp.utils.kppSuperClass.KPPSuperClass

Class for CADI quicklook.

	
calculate()

	

	Parameters:	N – Defines the width of the ring by the number of pixels it has to contain

	Returns:	self.image the imput fits file.

	
check_existence()

	

	Returns:	False

	
check_existence_noInit(outputDir=None, folderName=None)

	

	Returns:	False

	
initialize(inputDir=None, outputDir=None, folderName=None, compact_date=None, label=None)

	Initialize the non general inputs that are needed for the metric calculation and load required files.

For this super class it simply reads the input file including fits headers and store it in self.image.
One can also overwrite inputDir, outputDir which is basically the point of this function.
The file is assumed here to be a fits containing a 2D image or a GPI 3D cube (assumes 37 spectral slice).

Example for inherited classes:
It can read the PSF cube or define the hat function.
It can also read the template spectrum in a 3D scenario.
It could also overwrite this function in case it needs to read multiple files or non fits file.

	Parameters:	
	inputDir – If defined it allows filename to not include the whole path and just the filename.
Files will be read from inputDir.
Note tat inputDir might be redefined using initialize at any point.
If inputDir is None then filename is assumed to have the absolute path.

	outputDir – Directory where to create the folder containing the outputs.
Note tat inputDir might be redefined using initialize at any point.
If outputDir is None:

If inputDir is defined: outputDir = inputDir+os.path.sep+”planet_detec_“

	folderName – Name of the folder containing the outputs. It will be located in outputDir.
Default folder name is “default_out”.
The convention is to have one folder per spectral template.
If the keyword METFOLDN is available in the fits file header then the keyword value is used no
matter the input.

	label – Define the suffix to the output folder when it is not defined. cf outputDir. Default is “default”.

	Returns:	None

	
load()

	

	Returns:	None

	
save()

	

	Returns:	None

Module contents

pyklip.kpp.metrics package

Submodules

pyklip.kpp.metrics.FMMF module

pyklip.kpp.metrics.crossCorr module

	
class pyklip.kpp.metrics.crossCorr.CrossCorr(filename, inputDir=None, outputDir=None, folderName=None, mute=None, N_threads=None, label=None, overwrite=False, kernel_type=None, kernel_width=None, collapse=None, weights=None, nans2zero=None)

	Bases: pyklip.kpp.utils.kppSuperClass.KPPSuperClass

Class for SNR calculation.

	
calculate()

	

	Parameters:	N – Defines the width of the ring by the number of pixels it has to contain

	Returns:	self.image the imput fits file.

	
check_existence()

	

	Returns:	False

	
initialize(inputDir=None, outputDir=None, folderName=None, compact_date=None, label=None)

	Initialize the non general inputs that are needed for the metric calculation and load required files.

For this super class it simply reads the input file including fits headers and store it in self.image.
One can also overwrite inputDir, outputDir which is basically the point of this function.
The file is assumed here to be a fits containing a 2D image or a GPI 3D cube (assumes 37 spectral slice).

Example for inherited classes:
It can read the PSF cube or define the hat function.
It can also read the template spectrum in a 3D scenario.
It could also overwrite this function in case it needs to read multiple files or non fits file.

	Parameters:	
	inputDir – If defined it allows filename to not include the whole path and just the filename.
Files will be read from inputDir.
Note tat inputDir might be redefined using initialize at any point.
If inputDir is None then filename is assumed to have the absolute path.

	outputDir – Directory where to create the folder containing the outputs.
Note tat inputDir might be redefined using initialize at any point.
If outputDir is None:

If inputDir is defined: outputDir = inputDir+os.path.sep+”planet_detec_“

	folderName – Name of the folder containing the outputs. It will be located in outputDir.
Default folder name is “default_out”.
The convention is to have one folder per spectral template.
If the keyword METFOLDN is available in the fits file header then the keyword value is used no
matter the input.

	label – Define the suffix to the output folder when it is not defined. cf outputDir. Default is “default”.

	Returns:	None

	
load()

	

	Returns:	None

	
save()

	

	Returns:	None

pyklip.kpp.metrics.shapeOrMF module

Module contents

pyklip.kpp.stat package

Submodules

pyklip.kpp.stat.contrast module

pyklip.kpp.stat.contrastFMMF module

	
class pyklip.kpp.stat.contrastFMMF.ContrastFMMF(filename, filename_fakes=None, inputDir=None, outputDir=None, mute=None, N_threads=None, label=None, mask_radius=None, IOWA=None, GOI_list_folder=None, overwrite=False, contrast_filename=None)

	Bases: pyklip.kpp.utils.kppSuperClass.KPPSuperClass

Class for SNR calculation.

	
calculate()

	

	Parameters:	N – Defines the width of the ring by the number of pixels it has to contain

	Returns:	self.image the imput fits file.

	
check_existence()

	

	Returns:	False

	
initialize(inputDir=None, outputDir=None, folderName=None, compact_date=None, label=None)

	Initialize the non general inputs that are needed for the metric calculation and load required files.

For this super class it simply reads the input file including fits headers and store it in self.image.
One can also overwrite inputDir, outputDir which is basically the point of this function.
The file is assumed here to be a fits containing a 2D image or a GPI 3D cube (assumes 37 spectral slice).

Example for inherited classes:
It can read the PSF cube or define the hat function.
It can also read the template spectrum in a 3D scenario.
It could also overwrite this function in case it needs to read multiple files or non fits file.

	Parameters:	
	inputDir – If defined it allows filename to not include the whole path and just the filename.
Files will be read from inputDir.
Note tat inputDir might be redefined using initialize at any point.
If inputDir is None then filename is assumed to have the absolute path.

	outputDir – Directory where to create the folder containing the outputs.
Note tat inputDir might be redefined using initialize at any point.
If outputDir is None:

If inputDir is defined: outputDir = inputDir+os.path.sep+”planet_detec_“

	folderName – Name of the folder containing the outputs. It will be located in outputDir.
Default folder name is “default_out”.
The convention is to have one folder per spectral template.
If the keyword METFOLDN is available in the fits file header then the keyword value is used no
matter the input.

	label – Define the suffix to the output folder when it is not defined. cf outputDir. Default is “default”.

	Returns:	None

	
load()

	

	Returns:	None

	
save()

	

	Returns:	None

	
pyklip.kpp.stat.contrastFMMF.gather_contrasts(base_dir, filename_filter_list, mute=False, epoch_suffix=None, cont_name_list=None, band=None, stars2ignore=None)

	Build the multiple combined ROC curve from individual frame ROC curve while making sure they have the same inputs.
If the folders are organized following the convention below then it will make sure there is a ROC file for each
filename_filter in each epoch. Otherwise it skips the epoch.

	The folders need to be organized as:

	base_dir/TARGET/autoreduced/EPOCH_Spec/filename_filter

In the function TARGET and EPOCH are wild characters.

It looks for all the file matching filename_filter using glob.glob and then add each individual ROC to build the
master ROC.

Plot master_N_false_pos vs master_N_true_detec to get a ROC curve.

	Parameters:	
	base_dir – Base directory from which the file search go.

	filename_filter – Filename filter with wild characters indicating which files to pick.

	mute – If True, mute prints. Default is False.

	Returns:	threshold_sampling,master_N_false_pos,master_N_true_detec:
threshold_sampling: The metric sampling. It is the curve parametrization.
master_N_false_pos: Number of false positives as a function of threshold_sampling
master_N_true_detec: Number of true positives as a function of threshold_sampling

pyklip.kpp.stat.stat module

	
class pyklip.kpp.stat.stat.Stat(filename, filename_noPlanets=None, inputDir=None, outputDir=None, folderName=None, mute=None, N_threads=None, label=None, mask_radius=None, IOWA=None, N=None, Dr=None, r_step=None, type=None, rm_edge=None, GOI_list_folder=None, overwrite=False, kernel_type=None, kernel_width=None, image_wide=None, collapse=None, weights=None, nans2zero=None)

	Bases: pyklip.kpp.utils.kppSuperClass.KPPSuperClass

Class for SNR calculation.

	
calculate()

	

	Parameters:	N – Defines the width of the ring by the number of pixels it has to contain

	Returns:	self.image the imput fits file.

	
check_existence()

	

	Returns:	False

	
initialize(inputDir=None, outputDir=None, folderName=None, compact_date=None, label=None)

	Initialize the non general inputs that are needed for the metric calculation and load required files.

For this super class it simply reads the input file including fits headers and store it in self.image.
One can also overwrite inputDir, outputDir which is basically the point of this function.
The file is assumed here to be a fits containing a 2D image or a GPI 3D cube (assumes 37 spectral slice).

Example for inherited classes:
It can read the PSF cube or define the hat function.
It can also read the template spectrum in a 3D scenario.
It could also overwrite this function in case it needs to read multiple files or non fits file.

	Parameters:	
	inputDir – If defined it allows filename to not include the whole path and just the filename.
Files will be read from inputDir.
Note tat inputDir might be redefined using initialize at any point.
If inputDir is None then filename is assumed to have the absolute path.

	outputDir – Directory where to create the folder containing the outputs.
Note tat inputDir might be redefined using initialize at any point.
If outputDir is None:

If inputDir is defined: outputDir = inputDir+os.path.sep+”planet_detec_“

	folderName – Name of the folder containing the outputs. It will be located in outputDir.
Default folder name is “default_out”.
The convention is to have one folder per spectral template.
If the keyword METFOLDN is available in the fits file header then the keyword value is used no
matter the input.

	label – Define the suffix to the output folder when it is not defined. cf outputDir. Default is “default”.

	Returns:	None

	
load()

	

	Returns:	None

	
save()

	

	Returns:	None

pyklip.kpp.stat.statPerPix module

	
class pyklip.kpp.stat.statPerPix.StatPerPix(filename, inputDir=None, outputDir=None, mute=None, N_threads=None, label=None, mask_radius=None, IOWA=None, N=None, Dr=None, Dth=None, type=None, rm_edge=None, GOI_list_folder=None, overwrite=False, kernel_type=None, kernel_width=None, filename_noPlanets=None, collapse=None, weights=None, resolution=None, folderName=None)

	Bases: pyklip.kpp.utils.kppSuperClass.KPPSuperClass

Class for SNR calculation.

	
calculate()

	

	Parameters:	N – Defines the width of the ring by the number of pixels it has to contain

	Returns:	self.image the imput fits file.

	
check_existence()

	

	Returns:	False

	
initialize(inputDir=None, outputDir=None, folderName=None, compact_date=None, label=None)

	Initialize the non general inputs that are needed for the metric calculation and load required files.

For this super class it simply reads the input file including fits headers and store it in self.image.
One can also overwrite inputDir, outputDir which is basically the point of this function.
The file is assumed here to be a fits containing a 2D image or a GPI 3D cube (assumes 37 spectral slice).

Example for inherited classes:
It can read the PSF cube or define the hat function.
It can also read the template spectrum in a 3D scenario.
It could also overwrite this function in case it needs to read multiple files or non fits file.

	Parameters:	
	inputDir – If defined it allows filename to not include the whole path and just the filename.
Files will be read from inputDir.
Note tat inputDir might be redefined using initialize at any point.
If inputDir is None then filename is assumed to have the absolute path.

	outputDir – Directory where to create the folder containing the outputs.
Note tat inputDir might be redefined using initialize at any point.
If outputDir is None:

If inputDir is defined: outputDir = inputDir+os.path.sep+”planet_detec_“

	folderName – Name of the folder containing the outputs. It will be located in outputDir.
Default folder name is “default_out”.
The convention is to have one folder per spectral template.
If the keyword METFOLDN is available in the fits file header then the keyword value is used no
matter the input.

	label – Define the suffix to the output folder when it is not defined. cf outputDir. Default is “default”.

	Returns:	None

	
load()

	

	Returns:	None

	
save()

	

	Returns:	None

pyklip.kpp.stat.statPerPix_utils module

	
pyklip.kpp.stat.statPerPix_utils.get_image_stat_map_perPixMasking(image, image_without_planet, mask_radius=7, IOWA=None, N=None, centroid=None, mute=True, N_threads=None, Dr=None, Dth=None, type='SNR', resolution=None)

	Calculate the SNR or probability (tail distribution) of a given image on a per pixel basis.

	Parameters:	
	image – The image or cubes for which one wants the statistic.

	image_without_planet – Same as image but where real signal has been masked out. The code will actually use
map to calculate the standard deviation or the density function.

	mask_radius – Radius of the mask used around the current pixel when use_mask_per_pixel = True.

	IOWA – (IWA,OWA) inner working angle, outer working angle. It defines boundary to the zones in which the
statistic is calculated.

	N – Defines the width of the ring by the number of pixels it has to include.
The width of the annuli will therefore vary with sepration.

	centroid – Define the cente rof the image. Default is x_cen = np.ceil((nx-1)/2) ; y_cen = np.ceil((ny-1)/2)

	mute – Won’t print any logs.

	N_threads – Number of threads to be used. If None run sequentially.

	Dr – If not None defines the width of the ring as Dr. N is then ignored if Dth is defined as well.

	Dth – Define the angular size of a sector in degree (will apply for either Dr or N)

	type – Indicate the type of statistic to be calculated.
If “SNR” (default) simple stddev calculation and returns SNR.
If “stddev” returns the pure standard deviation map.
If “proba” triggers proba calculation with pdf fitting.

	Returns:	The statistic map for image.

	
pyklip.kpp.stat.statPerPix_utils.get_image_stat_map_perPixMasking_threadTask(row_indices, col_indices, image, image_without_planet, x_grid, y_grid, N, mask_radius, firstZone_radii, lastZone_radii, Dr=None, Dth=None, type='SNR', resolution=None)

	Calculate the SNR or probability (tail distribution) for some pixels in image on a per pixel basis.
The pixels are defined by row_indices and col_indices.

This function is used for parallelization

	Parameters:	
	row_indices – The row indices of images for which we want the statistic.

	col_indices – The column indices of images for which we want the statistic.

	image – The image or cubes for which one wants the statistic.

	image_without_planet – Same as image but where real signal has been masked out. The code will actually use
map to calculate the standard deviation or the density function.

	mask_radius – Radius of the mask used around the current pixel when use_mask_per_pixel = True.

	IOWA – (IWA,OWA) inner working angle, outer working angle. It defines boundary to the zones in which the
statistic is calculated.

	N – Defines the width of the ring by the number of pixels it has to include.
The width of the annuli will therefore vary with sepration.

	firstZone_radii – (DISABLED) When N is not None it contains the meam_radius, the min radius and the max radius defining
the first sector. The first sector in that case has includes roughly N pixels. For pixel too
close to the inner edge this sector is taken by default.

	lastZone_radii – (DISABLED) Same as firstZone_radii for the outer edge.

	centroid – Define the cente rof the image. Default is x_cen = np.ceil((nx-1)/2) ; y_cen = np.ceil((ny-1)/2)

	mute – Won’t print any logs.

	N_threads – Number of threads to be used. If None run sequentially.

	Dr – If not None defines the width of the ring as Dr. N is then ignored.

	Dth – Define the angular size of a sector in degree (will apply for either Dr or N)

	type – Indicate the type of statistic to be calculated.
If “SNR” (default) simple stddev calculation and returns SNR.
If “stddev” returns the pure standard deviation map.
If “proba” triggers proba calculation with pdf fitting.

	Returns:	The statistic map for image.

	
pyklip.kpp.stat.statPerPix_utils.get_image_stat_map_perPixMasking_threadTask_star(params)

	Convert f([1,2]) to f(1,2) call.
It allows one to call get_image_probability_map_perPixMasking_threadTask() with a tuple of parameters.

pyklip.kpp.stat.stat_utils module

	
pyklip.kpp.stat.stat_utils.get_cdf_model(data, interupt_plot=False, pure_gauss=False)

	Calculate a model CDF for some data.

/!This function is for some reason still a work in progress. JB could never decide what the best option was.
But it should work even if the code is a mess.

	Parameters:	
	data – arrays of samples from a random variable

	interupt_plot – Plot the histogram and model fit. It

	pure_gauss – Assume gaussian statistic. Do not fit exponential tails.

	Returns:	(cdf_model,new_sampling,im_histo, center_bins) with:
cdf_model: The cdf model = np.cumsum(pdf_model)
pdf_model: The pdf model
sampling: sampling of pdf/cdf_model
im_histo: histogram from original data
center_bins: bin centers for im_histo

	
pyklip.kpp.stat.stat_utils.get_cube_stddev(cube, IOWA, N=2000, centroid=None, r_step=None, Dr=None)

	

	
pyklip.kpp.stat.stat_utils.get_image_PDF(image, IOWA, N=2000, centroid=None, r_step=None, Dr=None, image_wide=None)

	

	
pyklip.kpp.stat.stat_utils.get_image_stat_map(image, image_without_planet, IOWA=None, N=3000, centroid=None, r_step=5, mute=True, Dr=None, type='SNR', image_wide=None)

	

	
pyklip.kpp.stat.stat_utils.get_image_stddev(image, IOWA=None, N=None, centroid=None, r_step=2, Dr=2, image_wide=None, resolution=None)

	

	
pyklip.kpp.stat.stat_utils.get_pdf_model(data, interupt_plot=False, pure_gauss=False)

	Calculate a model PDF for some data.

/!This function is for some reason still a work in progress. JB could never decide what the best option was.
But it should work even if the code is a mess.

	Parameters:	
	data – arrays of samples from a random variable

	interupt_plot – Plot the histogram and model fit. It

	pure_gauss – Assume gaussian statistic. Do not fit exponential tails.

	Returns:	(pdf_model,new_sampling,im_histo, center_bins) with:
pdf_model: The pdf model
new_sampling: sampling of pdf_model
im_histo: histogram from original data
center_bins: bin centers for im_histo

Module contents

pyklip.kpp.utils package

Submodules

pyklip.kpp.utils.GOI module

	
pyklip.kpp.utils.GOI.get_pos_known_objects(prihdr, exthdr, GOI_list_folder=None, xy=False, pa_sep=False, ignore_fakes=False, fakes_only=False, include_speckles=False, IWA=None, OWA=None)

	

	
pyklip.kpp.utils.GOI.make_GOI_list(outputDir, GOI_list_csv, GPI_TID_csv)

	Generate the GOI files from the GOI table and the TID table (queried from the database).

	Parameters:	
	outputDir – Output directory in which to save the GOI files.

	GOI_list_csv – Table with the list of GOIs (including separation, PA...)

	GPI_TID_csv – Table giving the TID code for a given object name.

	Returns:	One .csv file per target for which at list one GOI exists.
The filename follows: [object]_GOI.csv. For e.g. c_Eri_GOI.csv.

	
pyklip.kpp.utils.GOI.mask_known_objects(cube, prihdr, exthdr, GOI_list_folder=None, mask_radius=7, include_speckles=False)

	

pyklip.kpp.utils.GPIimage module

	
pyklip.kpp.utils.GPIimage.as2pix(sep_as)

	

	
pyklip.kpp.utils.GPIimage.get_IOWA(image, centroid=None)

	Get the IWA (inner working angle) of the central disk of nans and return the mask corresponding to the inner disk.

	Parameters:	
	image – A GPI image with a disk full of nans at the center.

	centroid – center of the nan disk

	Returns:	

	
pyklip.kpp.utils.GPIimage.get_occ(image, centroid=None)

	Get the IWA (inner working angle) of the central disk of nans and return the mask corresponding to the inner disk.

	Parameters:	
	image – A GPI image with a disk full of nans at the center.

	centroid – center of the nan disk

	Returns:	

	
pyklip.kpp.utils.GPIimage.pix2as(sep_pix)

	

pyklip.kpp.utils.kppSuperClass module

	
class pyklip.kpp.utils.kppSuperClass.KPPSuperClass(filename, inputDir=None, outputDir=None, folderName=None, mute=None, N_threads=None, label=None, overwrite=False)

	Bases: object

Super class for all kpop classes (ie FMMF, matched filter, shape, weighted collapse...).
Has fall-back functions for all metric dependent calls so that each metric class does not need to implement
functions it doesn’t want to.
It is not a completely empty function and includes features that are probably useful to most inherited class though
one might decide to overwrite them.
Here it simply returns the input fits file as read.

I should remove the option to set output dir in the class definition

	
calculate()

	Calculate the metric map.

For this super class it returns the input fits file read in initialize().

Inherited classes:
It could check at the output folder if the file with the right extension already exist.

	Returns:	self.image the imput fits file.

	
check_existence()

	Check if this metric has already been calculated for this file.

For this super class it returns False.

Inherited classes:
It could check at the output folder if the file with the right extension already exist.

	Returns:	False

	
init_new_spectrum(spectrum)

	Function allowing the reinitialization of the class with a new spectrum without reinitializing everything.

	Parameters:	spectrum – spectrum path relative to pykliproot + os.path.sep + “spectra” with pykliproot the directory in
which pyklip is installed. It that case it should be a spectrum from Mark Marley.
Instead of a path it can be a simple ndarray with the right dimension.
Or by default it is a completely flat spectrum.

	Returns:	None

	
initialize(inputDir=None, outputDir=None, folderName=None, label=None, read=True)

	Initialize the non general inputs that are needed for the metric calculation and load required files.

For this super class it simply reads the input file including fits headers and store it in self.image.
One can also overwrite inputDir, outputDir which is basically the point of this function.
The file is assumed here to be a fits containing a 2D image or a GPI 3D cube (assumes 37 spectral slice).

Example for inherited classes:
It can read the PSF cube or define the hat function.
It can also read the template spectrum in a 3D scenario.
It could also overwrite this function in case it needs to read multiple files or non fits file.

	Parameters:	
	inputDir – If defined it allows filename to not include the whole path and just the filename.
Files will be read from inputDir.
Note tat inputDir might be redefined using initialize at any point.
If inputDir is None then filename is assumed to have the absolute path.

	outputDir – Directory where to create the folder containing the outputs.
Note tat inputDir might be redefined using initialize at any point.
If outputDir is None:

If inputDir is defined: outputDir = inputDir+os.path.sep+”planet_detec_“

	folderName – Name of the folder containing the outputs. It will be located in outputDir.
Default folder name is “default_out”.
The convention is to have one folder per spectral template.
Usually this folderName should be defined by the class itself and not by the user.

	label – Define the suffix to the output folder when it is not defined. cf outputDir. Default is “default”.

	read – If true (default) read the fits file according to inputDir and filename.

	Returns:	None

	
load()

	Load the metric map if it already exist from self.outputDir+os.path.sep+self.folderName

For this super class it doesn’t do anything.

	Returns:	None

	
save()

	Save the metric map as a fits file in self.outputDir+os.path.sep+self.folderName

For this super class it doesn’t do anything.

Inherited classes:
It should probably include new fits keywords with the metric parameters before saving the outputs.

	Returns:	None

	
spectrum_iter_available()

	Should indicate wether or not the class is equipped for iterating over spectra.
If the metric requires a spectrum one might one to iterate over several spectra without rereading the input
files. In order to iterate over spectra the function init_new_spectrum() should be defined.
spectrum_iter_available is a utility function for campaign data processing to know wether or not spectra the
metric class should be iterated over different spectra.

In the case of this super class an therefore by default it returns False.

	Returns:	False

pyklip.kpp.utils.mathfunc module

	
pyklip.kpp.utils.mathfunc.LSQ_model_exp(x, y, m, alpha)

	

	
pyklip.kpp.utils.mathfunc.gauss2d(x, y, amplitude=1.0, xo=0.0, yo=0.0, sigma_x=1.0, sigma_y=1.0, theta=0, offset=0)

	

	
pyklip.kpp.utils.mathfunc.hat(x, y, radius)

	

	
pyklip.kpp.utils.mathfunc.model_exp(x, m, alpha)

	

pyklip.kpp.utils.multiproc module

	
class pyklip.kpp.utils.multiproc.NoDaemonPool(processes=None, initializer=None, initargs=(), maxtasksperchild=None)

	Bases: multiprocessing.pool.Pool

	
Process

	alias of NoDaemonProcess

	
class pyklip.kpp.utils.multiproc.NoDaemonProcess(group=None, target=None, name=None, args=(), kwargs={})

	Bases: multiprocessing.process.Process

	
daemon

	

Module contents

 Python Module Index

 p

 		 	

 		
 p	

 	[image: -]
 	
 pyklip	

 	
 	
 pyklip.covars	

 	
 	
 pyklip.fakes	

 	
 	
 pyklip.fitpsf	

 	
 	
 pyklip.fm	

 	
 	
 pyklip.fmlib	

 	
 	
 pyklip.fmlib.diskfm	

 	
 	
 pyklip.fmlib.extractSpec	

 	
 	
 pyklip.fmlib.fmpsf	

 	
 	
 pyklip.fmlib.matchedFilter	

 	
 	
 pyklip.fmlib.nofm	

 	
 	
 pyklip.instruments	

 	
 	
 pyklip.instruments.Instrument	

 	
 	
 pyklip.instruments.P1640_support	

 	
 	
 pyklip.instruments.P1640_support.P1640_cube_checker	

 	
 	
 pyklip.instruments.P1640_support.P1640_cube_checker_interactive	

 	
 	
 pyklip.instruments.P1640_support.P1640_spot_checker	

 	
 	
 pyklip.instruments.P1640_support.P1640contrast	

 	
 	
 pyklip.instruments.P1640_support.P1640cores	

 	
 	
 pyklip.instruments.P1640_support.P1640spots	

 	
 	
 pyklip.instruments.P1640_support.P1640utils	

 	
 	
 pyklip.instruments.SPHERE	

 	
 	
 pyklip.instruments.utils	

 	
 	
 pyklip.instruments.utils.nair	

 	
 	
 pyklip.klip	

 	
 	
 pyklip.kpp	

 	
 	
 pyklip.kpp.detection	

 	
 	
 pyklip.kpp.detection.CADIQuicklook	

 	
 	
 pyklip.kpp.detection.detection	

 	
 	
 pyklip.kpp.detection.quicklook	

 	
 	
 pyklip.kpp.detection.ROC	

 	
 	
 pyklip.kpp.kppPerDir	

 	
 	
 pyklip.kpp.metrics	

 	
 	
 pyklip.kpp.metrics.crossCorr	

 	
 	
 pyklip.kpp.stat	

 	
 	
 pyklip.kpp.stat.contrastFMMF	

 	
 	
 pyklip.kpp.stat.stat	

 	
 	
 pyklip.kpp.stat.stat_utils	

 	
 	
 pyklip.kpp.stat.statPerPix	

 	
 	
 pyklip.kpp.stat.statPerPix_utils	

 	
 	
 pyklip.kpp.utils	

 	
 	
 pyklip.kpp.utils.GOI	

 	
 	
 pyklip.kpp.utils.GPIimage	

 	
 	
 pyklip.kpp.utils.kppSuperClass	

 	
 	
 pyklip.kpp.utils.mathfunc	

 	
 	
 pyklip.kpp.utils.multiproc	

 	
 	
 pyklip.parallelized	

 	
 	
 pyklip.rdi	

 	
 	
 pyklip.spectra_management	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | K
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | W
 | Z

A

 	
 	activate_printing() (pyklip.instruments.P1640_support.P1640_cube_checker_interactive.CubeChecker method)

 	align_and_scale() (in module pyklip.klip)

 	align_and_scale_JB() (in module pyklip.klip)

 	aligned_center (pyklip.rdi.PSFLibrary attribute)

 	alloc_fmout() (pyklip.fmlib.diskfm.DiskFM method)

 	(pyklip.fmlib.extractSpec.ExtractSpec method)

 	(pyklip.fmlib.fmpsf.FMPlanetPSF method)

 	(pyklip.fmlib.matchedFilter.MatchedFilter method)

 	(pyklip.fmlib.nofm.NoFM method)

 	
 	alloc_interm() (pyklip.fmlib.nofm.NoFM method)

 	alloc_output() (pyklip.fmlib.nofm.NoFM method)

 	alloc_perturbmag() (pyklip.fmlib.fmpsf.FMPlanetPSF method)

 	(pyklip.fmlib.nofm.NoFM method)

 	aperture_convolve_cube() (in module pyklip.instruments.P1640_support.P1640cores)

 	aperture_refchan (pyklip.instruments.P1640_support.P1640spots.P1640params attribute)

 	as2pix() (in module pyklip.kpp.utils.GPIimage)

B

 	
 	best_fit_and_residuals() (pyklip.fitpsf.FMAstrometry method)

 	
 	bind_buttons_to_frame() (pyklip.instruments.P1640_support.P1640_cube_checker_interactive.CubeChecker method)

C

 	
 	CADIQuicklook (class in pyklip.kpp.detection.CADIQuicklook)

 	calc_contrast_multifile() (in module pyklip.instruments.P1640_support.P1640contrast)

 	calc_contrast_single_file() (in module pyklip.instruments.P1640_support.P1640contrast)

 	calc_scaling() (in module pyklip.klip)

 	calculate() (pyklip.kpp.detection.CADIQuicklook.CADIQuicklook method)

 	(pyklip.kpp.detection.ROC.ROC method)

 	(pyklip.kpp.detection.detection.Detection method)

 	(pyklip.kpp.detection.quicklook.Quicklook method)

 	(pyklip.kpp.metrics.crossCorr.CrossCorr method)

 	(pyklip.kpp.stat.contrastFMMF.ContrastFMMF method)

 	(pyklip.kpp.stat.stat.Stat method)

 	(pyklip.kpp.stat.statPerPix.StatPerPix method)

 	(pyklip.kpp.utils.kppSuperClass.KPPSuperClass method)

 	calculate_annuli_bounds() (in module pyklip.fmlib.extractSpec)

 	(in module pyklip.fmlib.fmpsf)

 	calculate_fm() (in module pyklip.fm)

 	calculate_fm_singleNumbasis() (in module pyklip.fm)

 	calculate_validity() (in module pyklip.fm)

 	calibrate_output() (pyklip.instruments.Instrument.Data method), [1]

 	(pyklip.instruments.Instrument.GenericData method)

 	(pyklip.instruments.SPHERE.Ifs method)

 	(pyklip.instruments.SPHERE.Irdis method)

 	centers (pyklip.instruments.Instrument.Data attribute), [1]

 	(pyklip.instruments.Instrument.GenericData attribute), [1]

 	(pyklip.instruments.SPHERE.Ifs attribute), [1]

 	(pyklip.instruments.SPHERE.Irdis attribute), [1]

 	centroid_image() (in module pyklip.instruments.P1640_support.P1640cores)

 	(in module pyklip.instruments.P1640_support.P1640utils)

 	channels (pyklip.instruments.P1640_support.P1640spots.P1640params attribute)

 	check_bad_channels() (in module pyklip.instruments.P1640_support.P1640spots)

 	
 	check_bad_spots() (in module pyklip.instruments.P1640_support.P1640spots)

 	check_existence() (pyklip.kpp.detection.CADIQuicklook.CADIQuicklook method)

 	(pyklip.kpp.detection.ROC.ROC method)

 	(pyklip.kpp.detection.detection.Detection method)

 	(pyklip.kpp.detection.quicklook.Quicklook method)

 	(pyklip.kpp.metrics.crossCorr.CrossCorr method)

 	(pyklip.kpp.stat.contrastFMMF.ContrastFMMF method)

 	(pyklip.kpp.stat.stat.Stat method)

 	(pyklip.kpp.stat.statPerPix.StatPerPix method)

 	(pyklip.kpp.utils.kppSuperClass.KPPSuperClass method)

 	check_existence_noInit() (pyklip.kpp.detection.CADIQuicklook.CADIQuicklook method)

 	(pyklip.kpp.detection.quicklook.Quicklook method)

 	clean_bad_pixels() (in module pyklip.instruments.P1640_support.P1640utils)

 	clean_bad_pixels_cube() (in module pyklip.instruments.P1640_support.P1640utils)

 	cleanup_fmout() (pyklip.fmlib.diskfm.DiskFM method)

 	(pyklip.fmlib.extractSpec.ExtractSpec method)

 	(pyklip.fmlib.fmpsf.FMPlanetPSF method)

 	(pyklip.fmlib.nofm.NoFM method)

 	combine_multiple_cores() (in module pyklip.instruments.P1640_support.P1640cores)

 	ConfigAction (class in pyklip.instruments.P1640_support.P1640_cube_checker)

 	(class in pyklip.instruments.P1640_support.P1640_cube_checker_interactive)

 	(class in pyklip.instruments.P1640_support.P1640_spot_checker)

 	ContrastFMMF (class in pyklip.kpp.stat.contrastFMMF)

 	convert_pa_to_image_polar() (in module pyklip.fakes)

 	convert_polar_to_image_pa() (in module pyklip.fakes)

 	correlation (pyklip.rdi.PSFLibrary attribute)

 	creator (pyklip.instruments.Instrument.Data attribute)

 	CrossCorr (class in pyklip.kpp.metrics.crossCorr)

 	CubeChecker (class in pyklip.instruments.P1640_support.P1640_cube_checker_interactive)

 	current_cube (pyklip.instruments.P1640_support.P1640_cube_checker_interactive.CubeChecker attribute)

D

 	
 	daemon (pyklip.kpp.utils.multiproc.NoDaemonProcess attribute)

 	Data (class in pyklip.instruments.Instrument)

 	dataset (pyklip.rdi.PSFLibrary attribute)

 	define_annuli_bounds() (in module pyklip.klip)

 	Detection (class in pyklip.kpp.detection.detection)

 	
 	DiskFM (class in pyklip.fmlib.diskfm)

 	dnah_spot_directory (in module pyklip.instruments.P1640_support.P1640_cube_checker)

 	draw_cube() (in module pyklip.instruments.P1640_support.P1640_cube_checker)

 	(in module pyklip.instruments.P1640_support.P1640_spot_checker)

 	draw_spot_cube() (in module pyklip.instruments.P1640_support.P1640_cube_checker)

 	draw_spots_on_cube() (pyklip.instruments.P1640_support.P1640_cube_checker_interactive.CubeChecker method)

E

 	
 	estimate_movement() (in module pyklip.klip)

 	extract_planet_centroid() (in module pyklip.spectra_management)

 	
 	extract_planet_spectrum() (in module pyklip.spectra_management)

 	ExtractSpec (class in pyklip.fmlib.extractSpec)

F

 	
 	filenames (pyklip.instruments.Instrument.Data attribute), [1]

 	(pyklip.instruments.Instrument.GenericData attribute), [1]

 	(pyklip.instruments.SPHERE.Ifs attribute), [1]

 	(pyklip.instruments.SPHERE.Irdis attribute), [1]

 	filenums (pyklip.instruments.Instrument.Data attribute), [1]

 	(pyklip.instruments.Instrument.GenericData attribute), [1]

 	(pyklip.instruments.SPHERE.Ifs attribute), [1]

 	(pyklip.instruments.SPHERE.Irdis attribute), [1]

 	find_bad_pix() (in module pyklip.instruments.P1640_support.P1640utils)

 	find_id_nearest() (in module pyklip.fm)

 	find_lower_nearest() (in module pyklip.spectra_management)

 	find_nearest() (in module pyklip.spectra_management)

 	find_upper_nearest() (in module pyklip.spectra_management)

 	fit_astrometry() (pyklip.fitpsf.FMAstrometry method)

 	fit_grid_spot() (in module pyklip.instruments.P1640_support.P1640spots)

 	
 	fit_grid_spots() (in module pyklip.instruments.P1640_support.P1640spots)

 	fit_poly() (in module pyklip.instruments.P1640_support.P1640spots)

 	fix_bad_channels() (in module pyklip.instruments.P1640_support.P1640spots)

 	flipx (pyklip.instruments.Instrument.Data attribute)

 	(pyklip.instruments.SPHERE.Ifs attribute)

 	(pyklip.instruments.SPHERE.Irdis attribute)

 	fm_end_sector() (pyklip.fmlib.matchedFilter.MatchedFilter method)

 	(pyklip.fmlib.nofm.NoFM method)

 	fm_from_eigen() (pyklip.fmlib.diskfm.DiskFM method)

 	(pyklip.fmlib.extractSpec.ExtractSpec method)

 	(pyklip.fmlib.fmpsf.FMPlanetPSF method)

 	(pyklip.fmlib.matchedFilter.MatchedFilter method)

 	(pyklip.fmlib.nofm.NoFM method)

 	fm_parallelized() (pyklip.fmlib.diskfm.DiskFM method)

 	FMAstrometry (class in pyklip.fitpsf)

 	FMPlanetPSF (class in pyklip.fmlib.fmpsf)

G

 	
 	gather_contrasts() (in module pyklip.kpp.stat.contrastFMMF)

 	gather_multiple_ROCs() (in module pyklip.kpp.detection.ROC)

 	gather_ROC() (in module pyklip.kpp.detection.ROC)

 	gauss2d() (in module pyklip.fakes)

 	(in module pyklip.kpp.utils.mathfunc)

 	gaussfit2d() (in module pyklip.fakes)

 	gaussfit2dLSQ() (in module pyklip.fakes)

 	generate_data_stamp() (pyklip.fitpsf.FMAstrometry method)

 	generate_fm_stamp() (pyklip.fitpsf.FMAstrometry method)

 	generate_model_sci() (pyklip.fmlib.matchedFilter.MatchedFilter method)

 	generate_model_sci_nearestNeigh() (pyklip.fmlib.matchedFilter.MatchedFilter method)

 	generate_models() (pyklip.fmlib.extractSpec.ExtractSpec method)

 	(pyklip.fmlib.fmpsf.FMPlanetPSF method)

 	(pyklip.fmlib.matchedFilter.MatchedFilter method)

 	generate_models_nearestNeigh() (pyklip.fmlib.matchedFilter.MatchedFilter method)

 	GenericData (class in pyklip.instruments.Instrument)

 	get_all_false_pos() (in module pyklip.kpp.detection.ROC)

 	get_candidates() (in module pyklip.kpp.detection.ROC)

 	get_cdf_model() (in module pyklip.kpp.stat.stat_utils)

 	get_centered_grid() (in module pyklip.instruments.P1640_support.P1640spots)

 	get_cube_stddev() (in module pyklip.kpp.stat.stat_utils)

 	get_cube_xsection() (in module pyklip.instruments.P1640_support.P1640cores)

 	(in module pyklip.instruments.P1640_support.P1640utils)

 	get_encircled_energy_cube() (in module pyklip.instruments.P1640_support.P1640cores)

 	(in module pyklip.instruments.P1640_support.P1640utils)

 	get_encircled_energy_image() (in module pyklip.instruments.P1640_support.P1640utils)

 	get_gpi_filter() (in module pyklip.spectra_management)

 	get_gpi_wavelength_sampling() (in module pyklip.spectra_management)

 	get_image_PDF() (in module pyklip.kpp.stat.stat_utils)

 	get_image_stat_map() (in module pyklip.kpp.stat.stat_utils)

 	get_image_stat_map_perPixMasking() (in module pyklip.kpp.stat.statPerPix_utils)

 	get_image_stat_map_perPixMasking_threadTask() (in module pyklip.kpp.stat.statPerPix_utils)

 	
 	get_image_stat_map_perPixMasking_threadTask_star() (in module pyklip.kpp.stat.statPerPix_utils)

 	get_image_stddev() (in module pyklip.kpp.stat.stat_utils)

 	get_initial_spot_guesses() (in module pyklip.instruments.P1640_support.P1640spots)

 	get_injection_core() (in module pyklip.instruments.P1640_support.P1640cores)

 	get_IOWA() (in module pyklip.kpp.utils.GPIimage)

 	get_metrics_stat() (in module pyklip.kpp.detection.ROC)

 	get_occ() (in module pyklip.kpp.utils.GPIimage)

 	get_pdf_model() (in module pyklip.kpp.stat.stat_utils)

 	get_planet_spectrum() (in module pyklip.spectra_management)

 	get_points_from_poly() (in module pyklip.instruments.P1640_support.P1640spots)

 	get_pos_known_objects() (in module pyklip.kpp.utils.GOI)

 	get_PSF_center() (in module pyklip.instruments.P1640_support.P1640cores)

 	(in module pyklip.instruments.P1640_support.P1640utils)

 	get_rotated_grid() (in module pyklip.instruments.P1640_support.P1640spots)

 	get_scaling() (in module pyklip.instruments.P1640_support.P1640spots)

 	get_scaling_and_centering_from_files() (in module pyklip.instruments.P1640_support.P1640spots)

 	get_scaling_and_centering_from_spots() (in module pyklip.instruments.P1640_support.P1640spots)

 	get_single_cube_scaling_factors() (in module pyklip.instruments.P1640_support.P1640spots)

 	get_single_cube_spot_photometry() (in module pyklip.instruments.P1640_support.P1640spots)

 	get_single_cube_spot_positions() (in module pyklip.instruments.P1640_support.P1640spots)

 	get_single_cube_spot_positions_and_photometry() (in module pyklip.instruments.P1640_support.P1640spots)

 	get_single_cube_star_positions() (in module pyklip.instruments.P1640_support.P1640spots)

 	get_single_file_scaling_and_centering() (in module pyklip.instruments.P1640_support.P1640spots)

 	get_single_file_spot_positions() (in module pyklip.instruments.P1640_support.P1640spots)

 	get_specType() (in module pyklip.spectra_management)

 	get_spot_positions() (in module pyklip.instruments.P1640_support.P1640spots)

 	get_spot_positions_and_photometry() (in module pyklip.instruments.P1640_support.P1640spots)

 	get_star_positions() (in module pyklip.instruments.P1640_support.P1640spots)

 	get_star_spectrum() (in module pyklip.spectra_management)

 	get_total_exposure_time() (in module pyklip.instruments.P1640_support.P1640_cube_checker)

 	(in module pyklip.instruments.P1640_support.P1640_cube_checker_interactive)

 	GetCoeff() (in module pyklip.instruments.utils.nair)

 	guess_grid_spot_loc() (in module pyklip.instruments.P1640_support.P1640spots)

H

 	
 	hat() (in module pyklip.kpp.utils.mathfunc)

 	
 	high_pass_filter() (in module pyklip.klip)

 	high_pass_filter_imgs() (in module pyklip.parallelized)

I

 	
 	Ifs (class in pyklip.instruments.SPHERE)

 	init_new_spectrum() (pyklip.kpp.utils.kppSuperClass.KPPSuperClass method)

 	initialize() (pyklip.kpp.detection.CADIQuicklook.CADIQuicklook method)

 	(pyklip.kpp.detection.ROC.ROC method)

 	(pyklip.kpp.detection.detection.Detection method)

 	(pyklip.kpp.detection.quicklook.Quicklook method)

 	(pyklip.kpp.metrics.crossCorr.CrossCorr method)

 	(pyklip.kpp.stat.contrastFMMF.ContrastFMMF method)

 	(pyklip.kpp.stat.stat.Stat method)

 	(pyklip.kpp.stat.statPerPix.StatPerPix method)

 	(pyklip.kpp.utils.kppSuperClass.KPPSuperClass method)

 	
 	inject_disk() (in module pyklip.fakes)

 	inject_planet() (in module pyklip.fakes)

 	input (pyklip.instruments.Instrument.Data attribute), [1]

 	(pyklip.instruments.Instrument.GenericData attribute), [1]

 	(pyklip.instruments.SPHERE.Ifs attribute), [1]

 	(pyklip.instruments.SPHERE.Irdis attribute), [1]

 	Irdis (class in pyklip.instruments.SPHERE)

 	isgoodpsf (pyklip.rdi.PSFLibrary attribute)

 	IWA (pyklip.instruments.Instrument.Data attribute), [1]

 	(pyklip.instruments.Instrument.GenericData attribute), [1]

 	(pyklip.instruments.SPHERE.Ifs attribute), [1]

 	(pyklip.instruments.SPHERE.Irdis attribute), [1]

K

 	
 	keep_button_pushed() (pyklip.instruments.P1640_support.P1640_cube_checker_interactive.CubeChecker method)

 	klip_dataset() (in module pyklip.fm)

 	(in module pyklip.parallelized)

 	klip_math() (in module pyklip.fm)

 	(in module pyklip.klip)

 	
 	klip_parallelized() (in module pyklip.fm)

 	(in module pyklip.parallelized)

 	klip_parallelized_lite() (in module pyklip.parallelized)

 	klipparams (pyklip.instruments.Instrument.Data attribute)

 	kppPerDir() (in module pyklip.kpp.kppPerDir)

 	KPPSuperClass (class in pyklip.kpp.utils.kppSuperClass)

L

 	
 	lnlike() (in module pyklip.fitpsf)

 	lnprior() (in module pyklip.fitpsf)

 	lnprob() (in module pyklip.fitpsf)

 	load() (pyklip.kpp.detection.CADIQuicklook.CADIQuicklook method)

 	(pyklip.kpp.detection.ROC.ROC method)

 	(pyklip.kpp.detection.detection.Detection method)

 	(pyklip.kpp.detection.quicklook.Quicklook method)

 	(pyklip.kpp.metrics.crossCorr.CrossCorr method)

 	(pyklip.kpp.stat.contrastFMMF.ContrastFMMF method)

 	(pyklip.kpp.stat.stat.Stat method)

 	(pyklip.kpp.stat.statPerPix.StatPerPix method)

 	(pyklip.kpp.utils.kppSuperClass.KPPSuperClass method)

 	
 	load_basis_files() (pyklip.fmlib.diskfm.DiskFM method)

 	load_selected_cube() (pyklip.instruments.P1640_support.P1640_cube_checker_interactive.CubeChecker method)

 	load_spot_files() (pyklip.instruments.P1640_support.P1640_cube_checker_interactive.CubeChecker method)

 	LSQ_gauss2d() (in module pyklip.fakes)

 	LSQ_model_exp() (in module pyklip.kpp.utils.mathfunc)

 	LSQ_place_model_PSF() (in module pyklip.spectra_management)

 	LSQ_scale_model_PSF() (in module pyklip.spectra_management)

M

 	
 	make_contrast_plot() (in module pyklip.instruments.P1640_support.P1640contrast)

 	make_contrast_summary_plot() (in module pyklip.instruments.P1640_support.P1640contrast)

 	make_corner_plot() (pyklip.fitpsf.FMAstrometry method)

 	make_GOI_list() (in module pyklip.kpp.utils.GOI)

 	make_mask_bar() (in module pyklip.instruments.P1640_support.P1640spots)

 	make_mask_circle() (in module pyklip.instruments.P1640_support.P1640spots)

 	make_mask_donut() (in module pyklip.instruments.P1640_support.P1640spots)

 	make_mask_grid_spots() (in module pyklip.instruments.P1640_support.P1640spots)

 	make_mask_half_img() (in module pyklip.instruments.P1640_support.P1640spots)

 	make_mask_refined_grid_spots() (in module pyklip.instruments.P1640_support.P1640spots)

 	
 	make_median_core() (in module pyklip.instruments.P1640_support.P1640cores)

 	mask_known_objects() (in module pyklip.kpp.utils.GOI)

 	master_correlation (pyklip.rdi.PSFLibrary attribute)

 	master_filenames (pyklip.rdi.PSFLibrary attribute)

 	master_library (pyklip.rdi.PSFLibrary attribute)

 	master_wvs (pyklip.rdi.PSFLibrary attribute)

 	MatchedFilter (class in pyklip.fmlib.matchedFilter)

 	matern32() (in module pyklip.covars)

 	meas_contrast() (in module pyklip.klip)

 	model_exp() (in module pyklip.kpp.utils.mathfunc)

N

 	
 	nan_gaussian_filter() (in module pyklip.klip)

 	nchan (pyklip.instruments.P1640_support.P1640spots.P1640params attribute)

 	next_button_pushed() (pyklip.instruments.P1640_support.P1640_cube_checker_interactive.CubeChecker method)

 	next_cube() (pyklip.instruments.P1640_support.P1640_cube_checker_interactive.CubeChecker method)

 	nfiles (pyklip.instruments.SPHERE.Ifs attribute)

 	(pyklip.instruments.SPHERE.Irdis attribute)

 	(pyklip.rdi.PSFLibrary attribute)

 	nMathar() (in module pyklip.instruments.utils.nair)

 	
 	NoDaemonPool (class in pyklip.kpp.utils.multiproc)

 	NoDaemonProcess (class in pyklip.kpp.utils.multiproc)

 	NoFM (class in pyklip.fmlib.nofm)

 	north_offset (pyklip.instruments.SPHERE.Ifs attribute)

 	(pyklip.instruments.SPHERE.Irdis attribute)

 	nRoe() (in module pyklip.instruments.utils.nair)

 	num_spots (pyklip.instruments.P1640_support.P1640spots.P1640params attribute)

 	nwvs (pyklip.instruments.SPHERE.Ifs attribute)

 	(pyklip.instruments.SPHERE.Irdis attribute)

O

 	
 	output (pyklip.instruments.Instrument.Data attribute), [1]

 	(pyklip.instruments.Instrument.GenericData attribute), [1]

 	(pyklip.instruments.SPHERE.Ifs attribute), [1]

 	(pyklip.instruments.SPHERE.Irdis attribute), [1]

 	
 	OWA (pyklip.instruments.Instrument.Data attribute)

P

 	
 	P1640params (class in pyklip.instruments.P1640_support.P1640spots)

 	PAs (pyklip.instruments.Instrument.Data attribute), [1]

 	(pyklip.instruments.Instrument.GenericData attribute), [1]

 	(pyklip.instruments.SPHERE.Ifs attribute), [1]

 	(pyklip.instruments.SPHERE.Irdis attribute), [1]

 	pertrurb_nospec() (in module pyklip.fm)

 	perturb_nospec_modelsBased() (in module pyklip.fm)

 	perturb_specIncluded() (in module pyklip.fm)

 	pix2as() (in module pyklip.kpp.utils.GPIimage)

 	place_model_PSF() (in module pyklip.spectra_management)

 	platescale (pyklip.instruments.SPHERE.Ifs attribute)

 	(pyklip.instruments.SPHERE.Irdis attribute)

 	plot_airmass_and_seeing() (in module pyklip.instruments.P1640_support.P1640_cube_checker)

 	prepare_library() (pyklip.rdi.PSFLibrary method)

 	prev_button_pushed() (pyklip.instruments.P1640_support.P1640_cube_checker_interactive.CubeChecker method)

 	prev_cube() (pyklip.instruments.P1640_support.P1640_cube_checker_interactive.CubeChecker method)

 	print_good_cubes() (pyklip.instruments.P1640_support.P1640_cube_checker_interactive.CubeChecker method)

 	Process (pyklip.kpp.utils.multiproc.NoDaemonPool attribute)

 	psf_center (pyklip.instruments.SPHERE.Ifs attribute)

 	(pyklip.instruments.SPHERE.Irdis attribute)

 	PSFcubefit() (in module pyklip.fakes)

 	PSFLibrary (class in pyklip.rdi)

 	psfs (pyklip.instruments.SPHERE.Ifs attribute)

 	(pyklip.instruments.SPHERE.Irdis attribute)

 	pyklip (module)

 	pyklip.covars (module)

 	pyklip.fakes (module)

 	pyklip.fitpsf (module)

 	pyklip.fm (module)

 	pyklip.fmlib (module)

 	pyklip.fmlib.diskfm (module)

 	pyklip.fmlib.extractSpec (module)

 	pyklip.fmlib.fmpsf (module)

 	pyklip.fmlib.matchedFilter (module)

 	pyklip.fmlib.nofm (module)

 	pyklip.instruments (module)

 	
 	pyklip.instruments.Instrument (module)

 	pyklip.instruments.P1640_support (module)

 	pyklip.instruments.P1640_support.P1640_cube_checker (module)

 	pyklip.instruments.P1640_support.P1640_cube_checker_interactive (module)

 	pyklip.instruments.P1640_support.P1640_spot_checker (module)

 	pyklip.instruments.P1640_support.P1640contrast (module)

 	pyklip.instruments.P1640_support.P1640cores (module)

 	pyklip.instruments.P1640_support.P1640spots (module)

 	pyklip.instruments.P1640_support.P1640utils (module)

 	pyklip.instruments.SPHERE (module)

 	pyklip.instruments.utils (module)

 	pyklip.instruments.utils.nair (module)

 	pyklip.klip (module)

 	pyklip.kpp (module)

 	pyklip.kpp.detection (module)

 	pyklip.kpp.detection.CADIQuicklook (module)

 	pyklip.kpp.detection.detection (module)

 	pyklip.kpp.detection.quicklook (module)

 	pyklip.kpp.detection.ROC (module)

 	pyklip.kpp.kppPerDir (module)

 	pyklip.kpp.metrics (module)

 	pyklip.kpp.metrics.crossCorr (module)

 	pyklip.kpp.stat (module)

 	pyklip.kpp.stat.contrastFMMF (module)

 	pyklip.kpp.stat.stat (module)

 	pyklip.kpp.stat.stat_utils (module)

 	pyklip.kpp.stat.statPerPix (module)

 	pyklip.kpp.stat.statPerPix_utils (module)

 	pyklip.kpp.utils (module)

 	pyklip.kpp.utils.GOI (module)

 	pyklip.kpp.utils.GPIimage (module)

 	pyklip.kpp.utils.kppSuperClass (module)

 	pyklip.kpp.utils.mathfunc (module)

 	pyklip.kpp.utils.multiproc (module)

 	pyklip.parallelized (module)

 	pyklip.rdi (module)

 	pyklip.spectra_management (module)

Q

 	
 	Quicklook (class in pyklip.kpp.detection.quicklook)

 	
 	quit_button_pushed() (pyklip.instruments.P1640_support.P1640_cube_checker_interactive.CubeChecker method)

R

 	
 	readdata() (pyklip.instruments.Instrument.Data method), [1]

 	(pyklip.instruments.Instrument.GenericData method)

 	(pyklip.instruments.SPHERE.Ifs method)

 	(pyklip.instruments.SPHERE.Irdis method)

 	refchan (pyklip.instruments.P1640_support.P1640spots.P1640params attribute)

 	reflambda (pyklip.instruments.P1640_support.P1640spots.P1640params attribute)

 	retrieve_planet() (in module pyklip.fakes)

 	
 	retrieve_planet_flux() (in module pyklip.fakes)

 	ROC (class in pyklip.kpp.detection.ROC)

 	rotate() (in module pyklip.klip)

 	rotate_imgs() (in module pyklip.parallelized)

 	run() (in module pyklip.kpp.kppPerDir)

 	run_checker() (in module pyklip.instruments.P1640_support.P1640_cube_checker)

 	(in module pyklip.instruments.P1640_support.P1640_spot_checker)

 	run_spot_checker() (in module pyklip.instruments.P1640_support.P1640_cube_checker)

S

 	
 	save() (pyklip.kpp.detection.CADIQuicklook.CADIQuicklook method)

 	(pyklip.kpp.detection.ROC.ROC method)

 	(pyklip.kpp.detection.detection.Detection method)

 	(pyklip.kpp.detection.quicklook.Quicklook method)

 	(pyklip.kpp.metrics.crossCorr.CrossCorr method)

 	(pyklip.kpp.stat.contrastFMMF.ContrastFMMF method)

 	(pyklip.kpp.stat.stat.Stat method)

 	(pyklip.kpp.stat.statPerPix.StatPerPix method)

 	(pyklip.kpp.utils.kppSuperClass.KPPSuperClass method)

 	save_correlation() (pyklip.rdi.PSFLibrary method)

 	save_fmout() (pyklip.fmlib.diskfm.DiskFM method)

 	(pyklip.fmlib.fmpsf.FMPlanetPSF method)

 	(pyklip.fmlib.nofm.NoFM method)

 	savedata() (pyklip.instruments.Instrument.Data method)

 	(pyklip.instruments.Instrument.Data static method)

 	(pyklip.instruments.Instrument.GenericData method)

 	(pyklip.instruments.SPHERE.Ifs method)

 	(pyklip.instruments.SPHERE.Irdis method)

 	
 	scale_factors (pyklip.instruments.P1640_support.P1640spots.P1640params attribute)

 	scroll_cube_left() (pyklip.instruments.P1640_support.P1640_cube_checker_interactive.CubeChecker method)

 	scroll_cube_right() (pyklip.instruments.P1640_support.P1640_cube_checker_interactive.CubeChecker method)

 	set_bounds() (pyklip.fitpsf.FMAstrometry method)

 	set_kernel() (pyklip.fitpsf.FMAstrometry method)

 	set_zeros_to_nan() (in module pyklip.instruments.P1640_support.P1640utils)

 	skip_section() (pyklip.fmlib.matchedFilter.MatchedFilter method)

 	(pyklip.fmlib.nofm.NoFM method)

 	spectrum_iter_available() (pyklip.kpp.utils.kppSuperClass.KPPSuperClass method)

 	sq_exp() (in module pyklip.covars)

 	Stat (class in pyklip.kpp.stat.stat)

 	StatPerPix (class in pyklip.kpp.stat.statPerPix)

T

 	
 	table_to_TableHDU() (in module pyklip.instruments.P1640_support.P1640utils)

 	
 	toggle_autoscroll() (pyklip.instruments.P1640_support.P1640_cube_checker_interactive.CubeChecker method)

 	toggle_check() (pyklip.instruments.P1640_support.P1640_cube_checker_interactive.CubeChecker method)

U

 	
 	update_cube_stats() (pyklip.instruments.P1640_support.P1640_cube_checker_interactive.CubeChecker method)

 	update_cubeax_display() (pyklip.instruments.P1640_support.P1640_cube_checker_interactive.CubeChecker method)

 	
 	update_disk() (pyklip.fmlib.diskfm.DiskFM method)

 	update_seeing_and_airmass() (pyklip.instruments.P1640_support.P1640_cube_checker_interactive.CubeChecker method)

 	usage() (in module pyklip.instruments.P1640_support.P1640_cube_checker)

W

 	
 	wavelengths (pyklip.instruments.SPHERE.Irdis attribute)

 	wcs (pyklip.instruments.Instrument.Data attribute), [1]

 	(pyklip.instruments.Instrument.GenericData attribute), [1]

 	(pyklip.instruments.SPHERE.Ifs attribute)

 	(pyklip.instruments.SPHERE.Irdis attribute)

 	wlsol (pyklip.instruments.P1640_support.P1640spots.P1640params attribute)

 	
 	write_spots_to_file() (in module pyklip.instruments.P1640_support.P1640spots)

 	write_spots_to_header() (in module pyklip.instruments.P1640_support.P1640spots)

 	wvs (pyklip.instruments.Instrument.Data attribute), [1]

 	(pyklip.instruments.Instrument.GenericData attribute), [1]

 	(pyklip.instruments.SPHERE.Ifs attribute), [1]

 	(pyklip.instruments.SPHERE.Irdis attribute), [1]

Z

 	
 	zero_pad_core_box() (in module pyklip.instruments.P1640_support.P1640cores)

setup module

pyklip

	pyklip package
	Subpackages
	pyklip.fmlib package
	Submodules

	pyklip.fmlib.diskfm module

	pyklip.fmlib.extractSpec module

	pyklip.fmlib.fmpsf module

	pyklip.fmlib.matchedFilter module

	pyklip.fmlib.nofm module

	Module contents

	pyklip.instruments package
	Subpackages

	Submodules

	pyklip.instruments.GPI module

	pyklip.instruments.Instrument module

	pyklip.instruments.NIRC2 module

	pyklip.instruments.P1640 module

	pyklip.instruments.SPHERE module

	Module contents

	pyklip.kpp package
	Subpackages

	Submodules

	pyklip.kpp.kppPerDir module

	Module contents

	Submodules

	pyklip.covars module

	pyklip.fakes module

	pyklip.fitpsf module

	pyklip.fm module

	pyklip.klip module

	pyklip.parallelized module

	pyklip.rdi module

	pyklip.spectra_management module

	Module contents

	setup module

 nav.xhtml

 Table of Contents

 		pyKLIP

 		Installation

 		Dependencies

 		Install

 		Note on parallelized performance

 		Release Notes

 		Basic KLIP Tutorial with GPI

 		Reading in GPI Data

 		Running KLIP

 		Picking KLIP Parameters for Point Sources

 		Geometry

 		“Aggressiveness”

 		Other

 		Picking KLIP Parameters for Disks

 		Geometry

 		Aggressiveness

 		Numbasis

 		Minrot

 		Project 1640 PyKLIP tutorial

 		Overview

 		Dependencies

 		Steps

 		Tutorial

 		Living On The Edge Version

 		Collect the datacubes

 		Vet the datacubes

 		Fit grid spots

 		Vet grid spots

 		Run KLIP

 		Calibrating Algoirthm Throughput & Generating Contrast Curves

 		Contrast Curves

 		Injecting Fake Planets

 		Bayesian KLIP-FM Astrometry (BKA)

 		Why BKA?

 		BKA Requirements

 		Generating instrumental PSFs for GPI

 		Forward Modelling the PSF with KLIP-FM

 		Fitting the Astrometry using MCMC and Gaussian Processes

 		Forward Model Matched Filter (FMMF) Tutorial with GPI

 		Input Data

 		Running FMMF

 		Disk Foward Modelling Tutorial with GPI

 		Running

 		Current Works in Progress

 		Developing for pyKLIP

 		Docker

 		Setup

 		Working With Docker

 		Sharing Images

 		Tests

 		Testing

 		Code Coverage

 		pyklip package

 		Subpackages

 		pyklip.fmlib package

 		pyklip.instruments package

 		pyklip.kpp package

 		Submodules

 		pyklip.covars module

 		pyklip.fakes module

 		pyklip.fitpsf module

 		pyklip.fm module

 		pyklip.klip module

 		pyklip.parallelized module

 		pyklip.rdi module

 		pyklip.spectra_management module

 		Module contents

_images/betpic_j_klmodes_cube.gif
1 KL Modes

250

200

150

100

50

0 50 100 150 200 250

_images/betpic_j_kl20_speccube.gif
250

200

150

100

50

1.114 microns

50 100 150 200 250

_images/betpic_j_instrumental_psf.png
ixles)

(pi

v

Instrumental PSF

(pixels)

00

_images/betpic_j_bka_chains.png
% E W £ [] 0

0 0 0 g £l [& w0

o i T W £ [] g
Steps

_images/betpic_j_bka_corner.png

_images/contrast_nothroughput.png
2 I 2 B i
(= (= (= (= (=
S S S S S

(payeaqiren) JoN) IseIIu0)) 0G

40 60 80 100 120

Separation (pixels)

20

=}

_images/betpic_j_withfakes.png
200

150

100

50

Data with fake planets (20 KL Modes)

.
50 100 150 200 250

_images/betpic_j_bka_comparison.png
X (pixel

Best-fit Model

X (pixel

Residuals

X (pixel

_images/pyklip_logo_150.png

_static/comment-close.png

_static/up.png

_images/contrast_calibrated.png
50 Contrast

103

10-4

105

10-6

40 60

Separation

80
(pixels)

100

120

_static/down-pressed.png

_static/ajax-loader.gif

_static/minus.png

_static/plus.png

_static/comment-bright.png

_static/file.png

_static/comment.png

_static/pyklip_logo_150.png

_static/up-pressed.png

_static/down.png

